PARUL UNIVERSITY PARUL INSTITUTE OF APPLIED SCIENCES MID SEMESTER INTERNAL EXAMINATION, MARCH 2020

M. Sc Semester II/ IMSC semester VIII

Subject: Chemistry

Paper Code: 11205153

Date: 4/03/2020

Maximum Marks: 40

Title of the paper: Physical Chemistry II

Time: 1 hrs 30 min

Instructions:

1. All questions are compulsory and options are given in first and second question only

2. Numbers to the right of question indicate the marks of respective question

Q. 1 Attempt any ONE question of the following:

(08)

- (i) Discuss the Raoult's law for ideal solutions and it's deviations for non ideal solutions.
- (ii) (a) State the procedure of the Apparent molar properties method for determining the value of the \overline{G}_2 for the case of solution whose concentration is expressed in terms of molality.
 - (b) Using the expression for V as a function of m for aqueous NaCl solution at 25°C:

 $V = 1002.94 + 16.40 \text{ m} + 2.140 \text{ m}^{3/2} + 0.0027 \text{ m}^{5/2} \text{ ml}$

Find \overline{V}_{N_2CI} and \overline{V}_{H_2CI} in a 1 molal solution

[Given: Molecular weight of water, is 18.069].

Q. 2 Attempt any THREE questions of the following:

(12)

- Define the term mean ionic activity coefficient and derive the equation of it for electrolytes.
- (ii) A solution of A and B with 30 mole percent of A is in equilibrium with its vapor which contains 60 mole percent of A. Assuming ideality of the solution and the vapor, calculate the ratio of the vapor pressure of pure A to that of pure B.
- (iii) What is the experimental procedure for determining the value of \overline{V}_1 from density measurements?
- (iv) Calculate the fugacity of one mole of ethane gas at 25°C and 200 atm

pressure. Given the integral value $\int_{0}^{P} (V - \frac{RT}{P}) dP$, evaluated graphically

is -20 under this condition of temperature and pressure.

(R 19872, ald g med R 0082054 fit. atm. deg mole 1)

(v) How one can accomme the lugacity of a gas present in the gaseous mixture which is formed with volume change upon mixing the gases?

	Do as discuted to 1	h
	Do as directed. Attempt all FIVE questions. (i) Give the two names of methods for determination of mean ionic activity coefficient.	
	(ii) Define the term the line.	
	(iii) Why the concept of Fugacity has been introduced?	
	(iv)Define the term: Partial Molal Property	
	(v) State the thermodynamic significance of partial molar properties.	
	Write correct option in your answer sheet for following 15 multiple (15) choice questions.	
1	A binary liquid solution is prepared by mixing n-heptane and ethanol.	
	Which one is the correct statement for the behavior of the solution?	
	(A) The solution is an ideal solution (B) The solution is non-ideal showing 4 ve deviation	
	(C) The solution is non-ideal showing (D) n-heptane shows +ve	
	-ve deviation deviation while ethanol	
	shows -ve deviation	
2	For NaCl electrolyte the value of mean ionic activity is	
	(A) $m^2 \gamma_{\pm}^2$ (B) $m^1 \gamma_{\pm}^1$	
	(C) $m^3 \gamma_{\pm}^3$ (D) $m^4 \gamma_{\pm}^4$	
3	For a 0.5 molal solution of Na ₂ SO ₄ the value of ionic molality is	
	(A) 0.5 (B) 0.25	
	(C) 0.94 (D) 0.79	
4	For an ideal solution the value of γ will be	
	$(A) 0 \tag{B} 1$	
	(C) > 1 (D) None of them	
7	According to Raoult's law the value of Ptotal is	
/	(A) $P_{total} = P_2^* - N_1 (P_1^* - P_2^*)$ (B) $P_{total} = P_1 + P_2$	
	(Ç) Both A and B (D) None of the above	
6	The system which shows positive deviations from Raoult's law is	
	(A) Ethanol-Acetone (B) Cyclohexane- Carbon	
	tetrachloride	
	(C) Acetone- Chloroform (D) Water- Nitric acid	
7	The concept of partial molar property is applicable to only	
	(A) closed system (B) isolated system	
	(C) open system (D) none of the above	
8	The value of the extensive property, G, of the homogeneous system is a	
	function of the variables such as	
	(A) temperature only (B) pressure only	

	(C) amounts of various constituents only	(Ď)	temperature, pressure and amounts of various constitutents		
MCQ 9	According to the Generalized method, the	e value	of the fugacity can be		
	evaluated by the use of				
	(A) generalized fugacity curves	(B)	generalized compressibility curves		
	(C) generalized (H*-H)/T curves	(D)	none of the above		
MCQ 10	The Lewis-Randall rule is based on the co	onsider			
	(A) there is a volume change when the gases are mixed	(B)	there is a double volume change when the gases are mixed		
	(C) there is no volume change when the gases are mixed	(D)	none of the above		
MCQ 11	The concept of fugacity is based on the u	se of	•		
1	(A) entropy functions	(B)	free energy functions		
+	(C) enthalpy functions	(D)	none of the above		
ACQ 12	The unit of apparent molar volume is				
	(A) ml.atm ⁻¹ .deg ⁻¹	(B)	ml.mole ⁻¹		
	(Ç) ml.mole ⁻¹ .deg ⁻¹	(D)	none of the above		
CQ 13	For a solution having a definite composition the value of the apparent molar property may be determined graphically by the				
	(A) slope of the tangent	(B)	slope of the chord		
	(C) slope of the both	(D)	none of the above		
CQ 14	For a real gas, at higher values of pressur	e, the v	value of the ration of f/P is		
	(A) constant	(B)	zero		
	(C) not costant	(D)	none of the above		
CQ 15	The value of the molar volume (V) of a re	eal gas	is		
	(A) RT	(B)	RT		
	$\frac{R}{P} - \alpha$		$\frac{RT}{P} + \alpha$		
	(C) <u>RT</u>	(D)	none of the above		
	P				