PARUL UNIVERSITY

PARUL INSTITUTE OF APPLIED SCIENCES MID SEMESTER INTERNAL EXAMINATION, APRIL 2017

M. Sc. Semester II Subject: Chemistry

Paper Code: 11205151 Title of the paper: Organic Chemistry-II

Date: 10/04/2017 Time: 12.30 p.m. to 02.00 p.m.

Maximum Marks: 40

Instructions:

- 1. All questions are compulsory and options are given in first and second question only
- 2. Numbers to the right of question indicate the marks of respective question.
- **Q. 1** Attempt any one question of the following.

(08)

- (i) Draw Frost circle diagrams for cycloheptatriene, cyclopentadiene, cyclooctatetraene and benzene.
- (ii) Explain following Cannizzaro reaction with mechanism.

Also explain intramolecular Cannizzaro reaction with example.

Q. 2 Attempt any three questions of the following.

(12)

(i) Explain why the following compounds will lose protons easily.

Fluorene

Indene

- (ii) Explain why cyclopentadienyl anion is aromatic and its cation is antiaromatic.
- (iii) Write a full account on fullerenes.
- (iv) Explain partial bond fixation in phenanthrene.
- (v) Give mechanism of Perkin reaction.

Q. 3 Do as directed. Attempt all five questions.

(05)

(i) Draw structure of [16] annulene.

(ii) Give products for the following reaction

DET = diethyl tartarate

- (iii) Draw structures of thiophene and pyrrole.
- (iv) Based on NMR data when is a compound called as diatropic?
- (v) What is the shape of cyclooctatetraene?
- Q. 4 Write correct option in your answer sheet for following 15 multiple choice questions. (15)

	CHOICE	e questions.					
MCQ 1	Reformatsky reaction makes use ofmetal as catalyst.						
	(A)	Zn	(B)	Cu			
	(C)	Ni	(D)	Na			
MCQ 2		Which of the following is a self redox reaction?					
		Cannizzaro reaction	(B)				
	(C)	Wittig reaction	(D)	Aldol condensation			
MCQ 3		The products of Cannizzaro reaction are					
	(C)	Carboxylic acid+ 1° alcohol Only carboxylic acid	(D)	Only 1° or 2° alcohol			
MCQ 4	Stobbe condensation is a reaction between a ketone and						
	(A)	dialkylmalonate	(B)	dialkylsuccinate			
		dialkylphthalate	(D)	dialkyloxalate			
MCQ 5	Bischler Napieralski reaction is used to prepare						
	(A)		(B)				
	(C)	pyrimidine	(D)	pyrrole			
MCQ 6	Dieckmann Condensation is intramolecular condensation of to form cyclic						
	prod	product.					
	(A)	diamide	(B)	diol			
	(C)	diester	(D)	diketone			
MCQ 7	Perk	Perkin reaction forms from aromatic aldehydes.					
	(A)	hydroxy acids	(B)	cinnamic acids			
	(C)	haloacids	(D)	ketoacids			
MCQ 8	Witti	Wittig reaction is used to convert ketone into					
	(A)	alkane	(B)				
	(C)		(D)				
MCQ 9	A compound with $4n \pi$ electrons will be						
	(A)	aromatic	(B)	antiaromatic			
	(C)	nonaromatic	(D)				
MCQ 10	Compounds which show outer protons downfield and inner protons upfield in						
	NMR are called in nature.						
	(A)	diatropic	(B)	paratropic			
	(C)	atropic	(D)	enantiotropic			
MCQ 11	The	The unit for NMR shift is					
	(A)	nm	(B)	ppm			
	(C)	gm/L	(D)	cm			
MCQ 12	Cyclopropyl cation will be in nature.						
	(A)	aromatic	(B)	antiaromatic			

	(C)	nonaromatic	(D)	none of the above		
MCQ 13	The push-pull effect of electrons in substituted cyclobutadiene is called as					
	(A)	annelation effect	(B)	captodative effect		
	(C)	Resonance effect	(D)	Inductive effect		
MCQ 14	The phenomenon in which a ring in a fused system gives up part of their					
	aromaticity to the adjacent ring is called as					
	(A)	annelation effect	(B)	captodative effect		
	(C)	Resonance effect	(D)	Inductive effect		
MCQ 15	The necessary condition for aromaticity is					
	(A)	molecule must be planar	(B)	possess $(4n+2)\pi$ electrons		
	(C)	possess alternate double and	(D)	all of the above		
		single bonds				

-- End of Paper--