PARUL UNIVERSITY

PARUL INSTITUTE OF APPLIED SCIENCES

MID SEMESTER INTERNAL EXAMINATION, MARCH 2020

B. Sc. Microbiology Semester VI

Paper Name: Enzymology
Paper Code: 11103201

Date: 04/03/2020
Time: 1hr 30min

Max. Marks: 40 Instructions:

- 1. All questions are compulsory and options are given in first and second question only.
- 2. Numbers to the right of question indicate the marks of respective question.
- **Q. 1** Attempt any one question of the following.

(08)

- (i) Explain the methods for homogenization of tissue.
- (ii) Explain Sodium dodecyl sulphate gel electrophoresis.
- **Q. 2** Attempt any three questions of the following.

(12)

- (i) Write a short note on Ping-Pong mechanism.
- (ii) Explain Ion-Exchange chromatography.
- (iii) What do you mean by enzyme specificity? Write the Lock and Key model of enzyme specificity.
- (iv) What is enzyme inhibition? Explain different types of enzyme inhibition.
- (v) What is dialysis? Write the principle of dialysis for protein purification.
- **Q. 3** Do as directed. Attempt all five questions.

(05)

- (i) Define enzyme activity.
- (ii) What do you mean by co-substrate and prosthetic group?
- (iii) Define activation energy of enzyme.
- (iv) What are the metalloenzymes?
- (v) What is bi-substrate reaction?
- Q. 4 Write correct option in your answer sheet for following 15 multiple choice questions. (15)

MCQ 1	Which dye is use to stain protein during PAGE?				
	(A)	Bromophenol blue	(B)	Coomasie blue	
	(C)	Ethidium bromide	(D)	Victoria blue	
MCQ 2	Affinity chromatography is based on the which property of protein:				
	(A)	Solubility of protein	(B)	Viscosity of protein	
	(C)	Charge of protein	(D)	Specific binding affinity of protein	
MCQ 3	Salting out process involves				
	(A)	Precipitation of protein using	(B)	Precipitation of protein using	
		Ammonium sulphate		Copper sulphate	
	(C)	Precipitation of protein using	(D)	None of these	
		Sodium chloride			
MCQ 4	In gel filtration chromatography, separation of protein is based on:				
	(A)	Size and shape	(B)	Size and net charge	
	(C)	Size and specific affinity	(D)	Shape and net charge	

MCQ 5	In an	ion exchange chromatography,				
	(A)	The column contains	(B)	The column contains positively		
	, ,	negatively charged beads,		charged beads, where negative		
		where positive charged		charged proteins binds		
		protein binds				
	(C)	The column contains both	(D)	All of these		
	(-)	positive and negative charged	(-)			
		beads, where protein binds				
		depending on their net charge				
MCQ 6	Amv		l dic. bond	l in starch dextrin and glycogen.		
	Amylase which acts on α -1-4 glycosidic, bond in starch dextrin and glycogen, shows which type of enzyme specificity					
	(A)	Bond	(B)	Group		
	(C)	Optical	(D)	Absolute		
MCQ 7	` ′	lding SDS during gel electrophor	` ′			
	(A)	Determine protein's	(B)	Determine enzyme's specific		
	()	isoelectric point		activity		
	(C)	Determine protein's amino	(D)	Separate proteins exclusively on		
		acid composition		the basis of their molecular weight		
MCQ 8	To de	etermine the isoelectric point of a	nrotein			
Mego	(A)	Contains a denaturing	(B)	Exhibit a protein's pH gradient		
	(11)	detergent that can distribute	(B)	when ampholytes become		
		uniform negative charges		distributed in an electric field		
		over the protein's surface		distributed in an electric field		
	(C)	Is washed with an antibody	(D)	Neutralizes all ionic groups on		
	(C)	specific to the protein of	(D)	protein by titrating with them with		
		interest				
MCQ 9	interest strong bases Name the coenzyme of riboflavin (B2)?					
WCQ 7		NAD or NADP	(B)	FAD and FMN		
	(C)	Coenzyme A	(D)	Thiamine pyrophosphate		
MCQ 10	` '	h of these best describes how the	` '	1 7 1 1		
MCQ 10	(A)		(B)	<u> </u>		
	(A)	The active site changes shape	(D)	The "induced fit" hypothesis		
		slightly to fit the substrate				
	(C)	It fits exactly into the active	(D)	The "lock and key" hypothesis		
		site				
MCQ 11		h of these are advantages of low	1			
	(A)	It allows reactions to proceed	(B)	It allows reactions to proceed at an		
		more quickly		acceptable temperature		
	(C)	It allows chemicals to react	(D)	It changes the optimum pH of the		
		that otherwise wouldn't		enzyme		
MCQ 12		ve enzymes which are not bound	1			
	(A)	Apoenzymes	(B)	Coenzymes		
	(C)	Holoenzymes	(D)	Co-substrates		
MCQ 13		n an enzyme may act on one subs	strate by	two different reaction types,		
	reaction specificity is called as:					
	10000					
	(A)	Optical specificity	(B)	Dual specificity		
	(A) (C)	Optical specificity Substrate specificity general mechanism is that an enz	(D)	None of them		

	(A)	Reducing the energy of	(B)	Increasing the energy of activation	
		activation			
	(C)	Decreasing the pH	(D)	Increasing the pH	
MCQ 15	The coenzyme is				
	(A)	Often a metal	(B)	Always a protein	
	(C)	Often a vitamin	(D)	Always an inorganic compound	

⁻⁻ End of Paper--