Synopsis Batch A

* Required

E	Email address *	
F	Full name of the student *	
	Enrollment Number *	
	In the dispersion of sulphur in water, acacia is used as an * Mark only one oval.	
•	Complexing agent wetting agent	
	detergent Deflocculating agent	

1 point

5. HLB range of lipophilic surfactant is *

1 point

2 to 9

Mark only one oval.

9 to 16 16 to 20

above 20

6. For wetting of solids by liquids the contact angle should have a value nearly *

1 point

Mark only one oval.

0 (

90

_____ 180

270

7.	When cetyl alcohol is added to water, it appears on the water surface as *	1 point
	Mark only one oval.	
	duplex film	
	insoluble monolayer	
	lens	
	soluble monolayer	
8.	Solid/solid interfaces are important in *	1 point
	Mark only one oval.	
	emulsions	
	pastes	
	suspensions	
	tablets	

9.	The higher the cohesive forces, the greater is the physical property. Identify *	1 point
	Mark only one oval.	
	Dipole moment	
	Optical rotation	
	Refractive index	
	Surface tension	
10.	When sugar is added to water the surface tension will *	1 point
	Mark only one oval.	ŧ
	Increase	
	Decreases	
	Not affected	
	zero	

11.	The rise in the capillary tube does NOT depend up on *	1 point
	Mark only one oval.	
	atmospheric pressure	
	density of liquid	
	radius of capillary	
	temperature	
12.	Pair of liquids that are miscible in all proportions are known as *	1 point
12.	Pair of liquids that are miscible in all proportions are known as * Mark only one oval.	1 point
12.		1 point
12.	Mark only one oval.	1 point
12.	Mark only one oval. Binary liquids	1 point
12.	Mark only one oval. Binary liquids concentrated liquids	1 point

•	13.	lodine is soluble in *	1 point
		Mark only one oval.	
		Carbon tetrachloride	
		Ethanol	
		starch	
		water	
	27AANNAA222 27A		successor and an experience of the second se

This content is neither created nor endorsed by Google.

Google Forms

Lab Internal Examination_BP 306 P_21-09-2020_BATCH B

	ynopsis : 10 Marks Required			
1.	Email address *			
2.	Name of The Student *			
3.	Enrollment Number(WRITE PROPER NUMBER) *			
		**		

4	1. Which of the following is frequently used as a cosolvent *	1 point
	Mark only one oval.	
	Ethyl alcohol	
	glycerin	
	peg 300	
	Propylene glycol	
5	5. In micellar solubilization which one of the following s used used	1 point
	Mark only one oval.	N.
	Acetone	
	Ethyl oleate	
	PEG	
	Tween 80	

6.	One of the following is not an advantage of pH Meter *	1 point
	Mark only one oval.	
	Suitable for Viscous gels	
	Sensitivity is high	
	pH measurement is large	
	equilibrium is attained rapidly	
7.	If the concentration of solid in liquid is higher than the equilibrium solubility such a solution is known as *	1 point
	Mark only one oval.	
	supersaturated solution	
	equilibrium solution	
	saturated solution	
	unsaturated solution	

8.	Alkaloids are more soluble in *	1 point
	Mark only one oval.	
	acidic media	
	alkaline media	
	basic media	
	neutral media	
9.	polysorbate 80 is an surfactant of type *	1 point
	Mark only one oval.	
	Amphilonic	
	anionic	
	cationic	
	non ionic	

10.	Near CMC micelles of surfactant molecules assume snape of "	i point
	Mark only one oval.	
	Cylinder	
	layered	
	rod shaped	
	spherical	
11.	Which is an example of cationic surfactant *	1 point
	Mark only one oval.	
	Benzalkonium chloride	
	Polysorbate 80	
	Sodium lauryl sulphate	
	sorbiton monooleate	

12.	the HLB value of lipophilic surfactant is *	1 point
	Mark only one oval.	
	2 to 9	
	9 to 16	
	16 to 20	
	above 20	
13.	When distilled water is in contact with a clean glass capillary the cos O(Teta) Value is *	1 point
	Mark only one oval.	W.
	180	
	90	
	one	
	zero	

This content is neither created nor endorsed by Google.

Google Forms

BATCH C SYNOPSIS

I SYNOPSIS-10 MARKS

* Required

1.	Full name of the student *
2.	Enrollment Number *
3.	In the dispersion of sulphur in water, acacia is used as an
	Mark only one oval.
	Complexing agent
	wetting agent
	detergent
	Deflocculating agent

4. HLB range of lipophilic surfactant is *
Mark only one oval.
2 to 9
9 to 16
16 to 20
above 20

5. For wetting of solids by liquids the contact angle should have a value nearly *

Mark only one oval.

 \bigcirc 0

90

______180

270

6.	When cetyl alcohol is added to water, it appears on the water surface as *
	Mark only one oval.
	duplex film
	insoluble monolayer
	lens
	soluble monolayer
7.	Solid/solid interfaces are important in *
	Mark only one oval.
	emulsions
	pastes
	suspensions
	tablets

8.	The higher the cohesive forces, the greater is the physical property.ldenti	ify*
	Mark only one oval.	
	Dipole moment	
	Optical rotation	
	Refractive index	
	Surface tension	
9.	When sugar is added to water the surface tension will *	
	Mark only one oval.	
	Increase	
	Decreases	
	Not affected	
	zero	

10.	The rise in the capillary tube does NOT depend up on *
	Mark only one oval.
	atmospheric pressure
	density of liquid
	radius of capillary
	temperature
11.	Which of the following is frequently used as a cosolvent *
	Mark only one oval.
	Ethyl alcohol
	glycerin
	peg 300
	Propylene glycol

12.	One of the following is not an advantage of pH Meter
	Mark only one oval.
	Suitable for Viscous gels
	Sensitivity is high
	pH measurement is large
	equilibrium is attained rapidly

This content is neither created nor endorsed by Google.

Google Forms