\qquad
\qquad
PARUL UNIVERSITY

FACULTY OF AGRICULTURE

B.Tech. (Agriculture Engineering) Summer 2018-19 Examination

Semester: 2
Date: 15/04/2019
Subject Code: 20103153
Time: 02:00pm To 04:00pm
Subject Name: Engineering Mathematics II
Total Marks: 50

Instructions

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 A) Fill in the blanks
i) Cauchy-Euler equations are differential equations with \qquad coefficients.
ii) Ordinary differential equations have \qquad independent variable.
iii) A function $z=\frac{2}{z^{2}+1}$ is not analytic at \qquad
iv) \qquad method is used to find complex function when either real or imaginary part is given.
v) Differential equations of order four have \qquad arbitrary constants in its general solution.
vi) Simultaneous differential equations have \qquad dependent variable.
vii) The value of Fourier coefficient b_{n} for $f(x)=x^{2}$ in $(-1,1)$ is \qquad
viii) $|x|$ is an \qquad function.
ix) $\quad J_{n}(x)$ is a Bessel function of order \qquad .
x) Frobenious method is used to obtain power series near \qquad point.

A) Multiple Choice Questions .

i) Singular points for $\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0$ are
a) $\pm i$
b) ± 1
c) 0
d)None of the above
ii) The complex function $f(z)=\frac{1}{z^{2}-1}$ is not analytic on
a) ± 1
b) $\pm i$
c) ± 2
d)None of the above
iii) The differential equation $M(x, y) d x+N(x, y) d y=0$ is exact if and only if ,
a) $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$
b) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
c) $\frac{\partial M}{\partial x}=-\frac{\partial N}{\partial y}$
d) $\frac{\partial M}{\partial y}=-\frac{\partial N}{\partial x}$
iv) Which of the following equation is linear iny?
$\begin{array}{lll}\text { a) } \frac{d y}{d x}+x y^{2}=\sin x & \text { b) } \frac{d y}{d x}+y=\sin x & \text { c) } \frac{d y}{d x}+x y=y^{2} \quad \text { d) } \frac{d y}{d x}+x y^{2}=e^{x}\end{array}$
$\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+\left(\frac{d y}{d x}\right)^{4}+y=\sin x$ is a differential equation with order \qquad and degree
a) 2,3
b) 3,2
c) 4,2
d) 2,4
vi) The integrating factor for a linear equation $\frac{d x}{d y}+p(y) x=q(y)$ is given by ,
a) $e^{-\int p(x) d x}$
b) $e^{\int p(x) d x}$
c) $e^{\int p(y) d y}$
d) $e^{-\int q(x) d x}$
vii) General solution of $\left(D^{2}+1\right) y=0$ is
a) $y=c_{1} \cos x+c_{2} \sin x$
b) $y=\left(c_{1}+c_{2} x\right) e^{-x}$
c) $y=c_{1} \cos t+c_{2} \sin t$
d) $y=\left(c_{1}+c_{2} t\right) e^{-t}$
viii) Wronskian of general solution $y=c_{1} \cos x+c_{2} \sin x$ is,
a) 1
b) $-\sin x$
c) $\cos x$
d) 0
ix) Cauchy-Riemann equations are,
a. $\frac{\partial u}{\partial y}=\frac{\partial u}{\partial x} \& \frac{\partial v}{\partial x}=-\frac{\partial v}{\partial y}$
b. $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x} \& \frac{\partial v}{\partial y}=-\frac{\partial v}{\partial x}$
c. $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \& \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
d. none of the above
x) Function $f(z)=\frac{3}{z^{2}+2 z+1}$ is discontinuous on point,
a) -1
b) 2
c) 0
d) 1
xi) Complex conjugate of $z=-2+6 i$ is
a) $z=-2-6 i$
b) $z=2-6 i$
c) $z=2+6 i$
d) $z=-2+6 i$
xii) $\quad|z|$ of $z=2+3 i$ is,
a) $\sqrt{13}$
b13
c) 4
d) $\sqrt{5}$
xiii) Order of $\frac{\partial^{2} u}{\partial x \partial t}=e^{-t} \cos x$ is
a) 3 b) 2
c) -1
d) 4
xiv) Partial differential equation $\frac{\partial^{3} u}{\partial x \partial t \partial y}=e^{-t} \cos x \sin y$ have___ independent variables,
a) 4
b) 2
c) 1
d) 3
xv) $\quad f_{x x}$ of $f=2 x^{2}+y^{3}$ is,
a) 2
b) $2 x$
c) 4
d) $4 x$
xvi) Laplace equation is ,
a) $f_{x x}+f_{y y}=0$
b) $f_{x x}-f_{y y}=0$
c) $f_{x y}+f_{y x}=0$
d) $4 f_{x x}+5 f_{x y}=0$
xvii) Real part of $z=e^{z}$
a) $e^{x} \cos y$
b) $e^{x} \sin y$
c) 0
d) e^{x}
xviii) If $z_{1}=2+3 i$ and $z_{2}=3+3 i$ then $z_{1}+z_{2}$ is ,
a) $5+6 i$
b) $6-6 i$
c) $5-6 i$
d) $-1+0 i$
xix) Clairauts equation is of the form
a) $z=p x+q y+f(p, q)$
b) $f(z, p, q)=0$
c) $f(p, q)=0$
d) $f(x, y, z)=0$
xx) $\quad \lim _{z \rightarrow-1} z^{2}+1$ is,
a) 2
b) 3
c) 0
d) i
Q. 2 A) Define the following (Any five out of seven questions)
(1) Ordinary differential equation.
(2) Cauchy-Euler differential equations.
(3) Power Series
(4) Harmonic Functions
(5) Fourier Series
(6) Singular Points
(7) Continuity of complex function .
B) Answer the following (Any five out of seven questions)
(1) Write the solution of partial differential equation $z=p x+q y+\sqrt{\sin p-\cos q}$
(2) Write $J_{0}(x)$
(3) Express x^{2} in terms of Legendre polynomials.
(4) What is $\operatorname{Im}(z)$ of z^{2} ?
(5) Give any example of a second order ordinary differential equation.
(6) Write half range sine series.
(7) Write value of $J_{1 / 2}(x)$
Q. 3 Do as directed. (Any five)
(1) Express $f(x)=x$ as Fourier sine series in the interval $(0, \pi)$
(2) Write ordinary and singular points for the differential equation

$$
\left(\mathrm{x}^{2}+4\right) \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-12 y=0
$$

(3) Solve the differential equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$
(4) Check whether $u=x^{2}-y^{2}+2 x y$ is harmonic function or not?
(5) Solve $\frac{\partial^{2} u}{\partial x \partial t}=e^{-t} \cos x$
(6) Check whether $\left(x^{3}+3 x y^{2}\right) d x+\left(3 x^{2} y+y^{3}\right) d y=0$ is exact or not ?

Q. 4 Answer the following. (Attempt any three)

(1) Obtain power series solution for $y^{\prime}+2 x y=0$ near an ordinary point.
(2) Examine the continuity of $f(z)=\left\{\begin{array}{cc}\frac{\bar{z}^{2}}{z}, & z \neq 0 \\ 0, & z=0\end{array}\right.$
(3) Form partial differential equation for the expression , $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$, where f is an arbitrary function.
(4) Solve $x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y=0$

