PARUL UNIVERSITY

Enrollment No:_____

FACULTY OF AGRICULTURE

B.Tech. (Agricultur	e Engineering)	Summer 2018 -	19 Examination
---------------------	----------------	---------------	----------------

Semester: Subject Co Subject Na Instruction 1. All quest	2 ode: 20 ame: E ns tions ar	Date: 15/04/2019 Diomatical Contract of Co	04:00pm						
 2. Figures t 3. Make su 4. Start nev 	to the ri itable a v quest	right indicate full marks. assumptions wherever necessary. tion on new page.							
Q.1 A)	Fill in i)	ll in the blanks Cauchy-Euler equations are differential equations with coefficients.							
	Ordinary differential equations have independent variable.								
	iii)	A function $z = \frac{2}{z^2 + 1}$ is not analytic at							
	iv)	method is used to find complex function when either real or imaginary part is given.							
	v)	Differential equations of order four have arbitrary constants in its general solution.							
	vi)	Simultaneous differential equations have dependent variable.							
	vii)	The value of Fourier coefficient b_n for $f(x) = x^2$ in (-1,1) is							
	viii)	x is an function.							
	ix)	$J_n(x)$ is a Bessel function of order							
	x)	Frobenious method is used to obtain power series near point.							
A)	Multi	iple Choice Questions .	(10)						
	i)	Singular points for $(x^2 + 1)y'' + xy' - y = 0$ are							
		a) $\pm i$ b) ± 1 c) 0 d)None of the above							
	ii)	The complex function $f(z) = \frac{1}{z^2 - 1}$ is not analytic on							
		a) ± 1 b) $\pm i$ c) ± 2 d)None of the above							
	iii)	The differential equation $M(x, y)dx + N(x, y)dy = 0$ is exact if and only if,							
	iv)	a) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$ b) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ c) $\frac{\partial M}{\partial x} = -\frac{\partial N}{\partial y}$ d) $\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x}$ Which of the following equation is linear iny?							
		a) $\frac{dy}{dx} + xy^2 = sinx$ b) $\frac{dy}{dx} + y = sinx$ c) $\frac{dy}{dx} + xy = y^2$ d) $\frac{dy}{dx} + xy^2 = e^x$							

v)
$$\left(\frac{d^3y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^4 + y = sinx$$
 is a differential equation with order _____ and degree
a) 2.3 b) 3.2 c) 4.2 d) 2.4
vi) The integrating factor for a linear equation $\frac{dx}{dy} + p(y)x = q(y)$ is given by .
a) $e^{-\int p(x)dx}$ b) $e^{\int p(x)dx}$ c) $e^{\int p(y)dy}$ d) $e^{-\int q(x)dx}$
vii) General solution of $(D^2 + 1)y = 0$ is
a) $y = c_1 \cos x + c_2 \sin x$ b) $y = (c_1 + c_2 x)e^{-x}$
c) $y = c_1 \cos x + c_2 \sin x$ d) $y = (c_1 + c_2 x)e^{-t}$
viii) Wronskian of general solution $y = c_1 \cos x + c_2 \sin x$ is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 1 b)-sinx c) cosx + c_2 sinx is ,
a) 2 c) 0 d) 1
xi) Complex conjugate of $z = -2 + 6i$ is
a) 2 c) -1 d) 4
xiv) Partial differential equation $\frac{\partial^2 u}{\partial x \partial dy} = e^{-t} \cos x \sin y$ have____ independent variables,
a) 4 b)2 c) 1 d) 3
xv) f_{xx} of $f = 2x^2 + y^3$ is,
a) 2 b) 2x c) 4 d) 4x
xiv) Laplace equation is ,
a) $f_{xx} + f_{yy} = 0$ b) $f_{xx} - f_{yy} = 0$ c) $f_{xy} + f_{yx} = 0$ d) $4f_{xx} + 5f_{xy} = 0$
xvii) Real part of $z = e^{z}$
a) $e^{x} \cos y$ b) $e^{x} \sin y$ c) 0 d) e^{x}

	xviii)	If $z_1 = 2 + 3i$ and $z_2 = 3 + 3i$ then $z_1 + z_2$ is,							
		a) 5+6i	b)6 – 6 <i>i</i>		c) 5 – 6 <i>i</i>		d) −1 + 0 <i>i</i>		
	xix)	Clairauts equation is of the form							
		a) $z = px + $	-qy + f(p,q)		b)f(z,p,q	() = 0			
		c) $f(p,q) = 0$			d) $f(x, y, z) = 0$				
	xx)	$\lim_{z \to -1} z^2 + 1 $ is,							
		a) 2 b) 3		c) 0		d) <i>i</i>			
Q.2 A)	Define the following (Any five out of seven questions)						(05)		
	(1)	Ordinary diffe	rential equation	ı.					
	(2)	Cauchy-Euler	differential equ	ations.					
	(3)	Power Series							
	(4)	Harmonic Fur	octions						
	(5)	Fourier Series							
	(6)	Singular Point	ts						
D	(7)	Continuity of	complex function	on.	. · · · · · · · · · · · · · · · · · · ·				
B)	Answe	er the following	g (Any five out	of seven q	uestions)		/	(05)	
	(1)	Write the solution of partial differential equation $z = px + qy + \sqrt{sinp - cosq}$							
	(2) Write $J_0(x)$								
	(3)	Express x^2 in terms of Legendre polynomials. What is $Im(z)$ of z^2 ?							
	(4)								
	(5)	Give any example of a second order ordinary differential equation.							
	(6)	Write half range sine series.							
	(/)	Write value of	$J_{1/2}(x)$					(10)	
Q.3	Do as o	directed. (Any	five)		• .1 • .	1 (0)		(10)	
	(1)	(1) Express $f(x) = x$ as Fourier sine series in the interval $(0,\pi)$							
	(2) Write ordinary and singular points for the differential equation $(x^{2} + 4) \frac{d^{2}y}{d^{2}y} + 2x \frac{dy}{d^{2}y} = 12y = 0$								
	(A) $\Gamma T \int \frac{dx^2}{dx^2} T \Delta x \frac{dx}{dx} = 12y = 0$ (2) Solve the differential exerction $x'' + \Gamma x' + C = 0$								
	(3)	Solve the differential equation $y' + 5y' + 6y = 0$ Check whether $u = x^2 - y^2 + 2xy$ is harmonic function or not?							
	(+) (5)								
	(3)	Solve $\frac{\partial u}{\partial x \partial t} = 0$	e ^{-t} cosx						
	(6)	Check whethe	$r(x^3 + 3xy^2)a$	$dx + (3x^2)$	$(y + y^3)dy =$	0 is exact of	r not ?		
Q.4	Answe	swer the following. (Attempt any three)					(15)		
	(1)	Obtain power	series solution	for $y' + 2x$	xy = 0 near a	n ordinary p	oint.		
	(2)	Examine the c	continuity of $f(x)$	$z) = \begin{cases} \frac{\bar{z}^2}{z}, \\ 0, \end{cases}$	$z \neq 0$ $z = 0$				
	(3) Form partial differential equation for the expression, $f(x + y + z, x^2 + y^2 + z^2) = 0$, where f is an arbitrary function.								
	(4) Solve $x^3 y^{"'} - 3x^2 y^{"} + 6xy^{'} - 6y = 0$								