Seat No: _____

PARUL UNIVERSITY

FACULTY OF AGRICULTURE B.Tech. (Agriculture/Dairy Technology) Winter 2019 - 20 Examination

Semester: Subject Co Subject Na	Semester:3 Subject Code: 20103203 Subject Name: Engineering Mathematics - III					Date: 27/11/2019 Time: 10.30 am To 12 Total Marks: 50	2.30 pm		
Instruction 1. All ques 2. Figures t 3. Make su 4. Start new	ns tions ar to the ri itable a v questi	e compulsory. ght indicate fu ssumptions wh on on new pag	ll marks. herever neces ge.	ssary.					
Q.1									
A)	Fill ir	The relationship between E and Δ is							(05)
	i) ii)	Let <i>h</i> be the finite difference, then forward difference operator is defined by .							
	iii)	The Newton	ı's quadrat	ure formula	a for	n =	1repres	ents rule.	
	iv)	The trapezo integrating	oidal rule of at most	f integration order j	n for poly	the	two-segi ials.	ment is exact for	
	v)	A Unit step	function is	defined as			·		
	vi)	The Laplace	e transform	of L{t} is _			·		
	vii)	The null hy	pothesis co	ontains a sta	item	ent c	of	<u> </u>	
	viii)	For thedistribution, the observation closer to middle will occur with increasing frequency.							
	ix)	Relation be	tween mea	n, median a	nd n	node	is		
	x)	The value o	f correlatio	on coefficier	nt is 🛛	betw	een	and	
B)	Multi	ple Choice	Questions	(Each of 0.	5 Ma	ark)			(10)
		Newton fo	orward inte	erpolation f	orm	ula is	s used fo	r intervals.	
	i)	a)	open				b)	Unequal	
		c)	equal				d)	Closed	
	ii)	$\begin{array}{c c} \Delta^2 \text{ is calle} \\ \hline a & \text{ first} \\ \end{array}$	d the <u>o</u> n	rder differe	nce o b)	opera Sec	ator. ond		
		c) third	l		d	Fou	ırth		
)				
	iii)	The shifti	ng operato	r is denoted	l by _		·		

ć	a)	Ε	b)	ω
---	----	---	----	---

c)	∇	d)	Т
----	----------	----	---

The value of $(1 - \nabla)(1 + \Delta)$ is _____. iv)

a)	$\nabla + \Delta$	b)	1
c)	Ε	d)	Noneofthese

The mean of 6, 5, 3,2,9 is_____ v)

a)	5	b)	4
c)	3	d)	2

vi)

In Simpson's 3/8th rule, the number of intervals (n) should be multiple of_____.

a)	3	b)	1
c)	2	d)	None of these

The Runge-Kutta method of second order is the _____method. vii)

a)	Euler method	b)	modified Euler
c)	Taylor's method	d)	None of these

viii) The Gaussian quadrature formula for three point is exact for polynomials up to _____ degree.

a)	1	b)	3
c)	5	d)	4

ix)

Which of the following function does not have Laplace Transform?

a)	$g(t) = t^2$	b)	$g(t) = e^{t^2}$
c)	$g(t) = \frac{\sin t}{t}$	d)	None of these

x)

$\int s(s^2+1)$)∫ ¹³		
a)	$1 + \sin t$	b)	$1 - \sin t$
)		~)	
c)	$1 + \cos t$	d)	$1 - \cos t$
-)			

xi)

$L\{\delta(t -$	a)} is
-----------------	--------

 $I^{-1} \int \frac{1}{1} i s$

a)	e ^{-as}	b)	e ^{as}
c)	e^{-as^2}	d)	None of these

The Laplace transform of *1* is _____. xii)

a)	$\frac{1}{s}$	b)	$\frac{1}{s^2}$
c)	$-\frac{(-1)^2}{s}$	d)	None of these

A statement about population developed for the purpose of testing is xiii) called _____.

a)	Hypothesis	b)	Hypothesis testing
c)	Level of significance	d)	Test- statistic

Any statement whose validity is tested on the basis of a sample is called xiv)

a)	Null hypothesis	b)	Alternative hypothesis
c)	Statistical hypothesis	d)	simple hypothesis

A hypothesis may be classified as _____. xv)

a)	Simple	b)	Composite
c)	Null	d)	All of the above

xvi)

The alternative hypothesis is also called ______.

a)	Null hypothesis	b)	Research hypothesis
c)	Statistical hypothesis	d)	simple hypothesis

xvii)

The equation of regression lines y = 0.5x + a and x = 0.4y + b. The correlation coefficient is _____.

a)	$\sqrt{0.2}$	b)	0.45
c)	$-\sqrt{0.2}$	d)	None of these

xviii)

The median of the numbers 11,10,12,13 and 9 is ______.

a)	12.5	b)	12
c)	10.5	d)	11

xix)

The correlation coefficient *r* is independent of change of _____.

a)	Origin and Scale	b)	Origin
c)	Scale	d)	None of the above

xx)

If r = 0, the two variables are _____.

a)	Linearly independent	b)	Linearly dependent

		c)	Positive correlation	d)	Negative correlation			
Q.2								
A)	Defi	ne the foll	owing (Any five out of seve	n questio	1s)	(05		
	(1)	Write tł	e Newton's Forward interpo	lation form	iula.			
	(2)	Write tł	e Newton's divided differenc	e formula.				
(3) Write the formula of the Taylor series and modified Taylor series.								
(4) What is the Laplace transform of cosh <i>at</i> ?								
	(5)	State fir	State first shifting theorems for the Laplace transform.					
	(6)	Define test of significance.						
	(7)	The ang	le between two regression lii	nes is giver	ı by			
B)	Answer the following (Any five out of seven questions)							
	(1)	Write tł	e Newton's Backward interp	olation for	mula.			
	(2)	Prove th	the $E = 1 + \Delta$.					
	(3)	State Eu	ler and modified Euler formu	ıla.				
	(4)	Find $L^{-1} \left\{ \frac{1}{C + 2} \right\}$.						
	(5)	Find L($t^{2} + \sin 2t - 2e^{-t}$					
	(6)	Write th	e formula for spearmans cor	relation.				
	(7)	Define I	Karl Pearson's correlation coe	efficient.				
Q.3	Writ	Write Short notes(Any five out of six questions)						
	(1)	Constru	ct the table using Newton's d	ivided diff	erence formula for the			

1					
	X:	1	2	4	10
		-	-	-	10
	f(y)	10	15	67	430
	1(Д).	10	15	07	150

- (2) Find the value of y for x = 0.1 by Picard's method, given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1.
- (3) Apply Runge's method to find an approximate value of y when x = 0.2, given that $\frac{dy}{dx} = x + y$ and y = 1 when x = 0.
- (4) Find the value of 1 * t.

following data:

- (5) What are degrees of freedom of \bar{x} , s^2 and correlation coefficient?
- (6) Find the equation of regression lines from the following data and also estimate y for x=1.

X	3	2	-1	6	4	-2	5	7
у	5	13	12	-1	2	20	0	-3

Q.4 Long Questions (Any three out of four questions)

(1) Find f(14) using Gauss backward formula:

x	0	5	10	15	20	25
y = f(x)	7	11	14	18	24	32

(15)

(2) Evaluate f(9), using Newton's divided difference formula for the given values

x:	5	7	11	13	17
f(x):	150	392	1452	2366	5202

(3) Evaluate $\int_{0}^{6} \frac{dx}{1+x^{2}}$ by using (i) Trapezoidal rule, (ii) Simpson's 1/3 rule,

(iii) Gauss Formula for n = 2 and n = 3.

(4) Using Laplace transformation solve the initial value problem $y'' + 2y' + 5y = e^{-t} \sin t$, y(0) = 0, y'(0) = 1