\qquad
\qquad

PARUL UNIVERSITY

FACULTY OF AGRICULTURE
B.Tech. Winter 2019-20 Examination

Semester: 2
Date: 12/12/2019
Subject Code: 20103153
Time: 10:30 am to 12:30 pm
Subject Name: Engineering Mathematics - II

Instructions

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.

Q. 1

A) Fill in the blanks (Each of 0.5 Mark)

The general integral of $2 p+3 q=z$ is \qquad .
i)
ii) The Wronskian of two functions x and x^{2} is \qquad -
iii) The one dimensional heat equation is defined as \qquad -.
iv) If $u=x^{2}+y^{2}$ is harmonic, then the corresponding analytic function $f(z)=$ \qquad -.
v) The equation $|z|=2$ represents \qquad .
vi) If $z=x+i y$ then $|z|$ is \qquad .
vii) The real part of $f(z)=3 z+2$ is \qquad -
viii) The special function $P_{n}(x)$ is roots of \qquad differential equation.
ix) Linear partial differential equation can be solved by \qquad method.
x) The Bernoulli equation $\frac{d y}{d x}+p(x) y=Q(x) y^{n}$ can be reduced to separation of variable equation by using the substitution $n=$ \qquad .

B) Multiple Choice Questions (Each of 0.5 Mark)

i) $\quad\left[1+\left(y^{\prime}\right)^{2}\right]^{\frac{1}{2}}=y^{\prime \prime}$ is a differential equation with order \qquad and degree \qquad -

a)	2,2	b)	3,2
c)	2,4	d)	4,2

ii) Which of the following equation is not a differential equation?

a)	$\left(y^{2}-x^{2}\right) d x+2 x y d y=0$ b)	$\left(x^{3}+3 x y^{2}\right) d x+\left(3 x^{2} y+y^{3}\right) d y$ $=0$	
c)	$\mathrm{x}+2 \mathrm{y}=0$	d)	$y e^{x} d x+\left(2 y+e^{x}\right) d y=0$

iii) A complete integral of the second order linear differential equation is having
\qquad arbitrary constants.

a)	3	b)	2
c)	1	d)	0

iv)
viii) The value of $\sin n \pi$ when $n=200$ is

a)	200	b)	2
c)	1	d)	0

ix) The period of trigonometric function $\sin x$ is

a)	2π	b)	0
c)	π	d)	3π

x)
xi)

a)	t^{3}	b)	$\sin t$
c)	$\cos t$	d)	t^{5}

xi) Which of the following is Dirichlet's condition?

a)	$f(x)$ is not periodic.	b)	$f(x)$ is infinite.
c)	$f(x)$ is single valued function.	d)	None of these

xii) The value of $\int_{0}^{2 \pi} \cos 3 x \sin x d x=$ \qquad .

a)	0	b)	π
c)	$-\pi$	d)	None of these

xiii) The value of $\left|e^{i \pi}\right|$ is \qquad

a)	1	b)	$1+i$
c)	-1	d)	None of these

a)	$2 x$	b)	$2 y$
c)	0	d)	None of these

a)	$f\left(x^{2}, y^{2}\right)=0$	b)	$f(x y, y z)=0$
c)	$f(x, y)=0$	d)	$f\left(\frac{x}{y}, \frac{y}{z}\right)=0$

xvi) If $u=x^{2}+4 t^{2}$ is a solution of $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}$, then $c=$ \qquad .

a)	1	b)	2
c)	0	d)	None of these

xvii) The partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=6$ is \qquad .

a)	Elliptic	b)	hyperbolic
c)	Parabolic	d)	None of these

xviii) Which of the following is one dimensional Laplace equation?

a)	$\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$	b)	$\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
c)	$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$	d)	None of these

xix) Which of the following partial differential equation has the general solution $p q=1$?

a)	$z=x+y+c$	b)	$z=\frac{1}{b} x+a y+c$
c)	$a z+b=a^{2} x+y$	d)	None of these

xx) The degree and order of the partial differential equation
$p^{2}+q^{2}=z$ are \qquad .

a)	1,2	b)	2,1
c)	1,1	d)	None of these

Q.2A) Define the following (Any five out of seven questions)
(1) Which is necessary condition for an exact differential equation?
(2) State formula of solution of Bessel's differential equation.
(3) Find singular points of the equation $\left(1+x^{2}\right) y^{\prime \prime}-3 x y^{\prime}-2 y=0$.
(4) Find product of $2+3 i$ and $-1+i$.
(5) State Cauchy-Riemann's equation.
(6) Give example of non-linear partial differential equation.
(7) Write example of second order first degree partial differential equation.

Q. 2 B) Answer the following (Any five out of seven questions)

(1) Define linear differential equation.
(2) Define particular solution of a differential equation.
(3) Define Cauchy-Legendre's differential equation with variable coefficient.
(4) Define complex number.
(5) Define half range Fourier series.
(6) \quad Solve $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$.
(7) State one dimensional Heat equation.

Q. 3 Write Short notes (Any five out of six questions)

(1) \quad Solve $y^{2} y^{\prime}=2 x^{2}$.
(2) \quad Solve $\left(D^{2}+2 D+1\right) y=0$.
(3) Show that $u=2 x-x^{3}+3 x y^{2}$ is harmonic.
(4) Find the Fourier sine series of $f(x)=x$ in $0<x<\pi$.
(5) \quad Solve $p^{2}+q^{2}=x+y$.
(6) Form a partial differential equation for the equation $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$.

Q. 4 Long Questions (Any three out of four questions)

(1) Solve $y^{\prime \prime}+2 y^{\prime}+y=2 \cos 2 x+3 x+2+3 e^{x}$.
(2) (i) Express half range cosine series of $f(x)=e^{x}$ in the interval $(0, \pi)$.
(ii) Check whether the function $f(z)=|z|^{2}$ is analytic or not?
(3) Obtain the Fourier series of the function, $f(x)=\frac{\pi-x}{2}, 0 \leq x \leq 2 \pi$ and prove that $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4}$.
(4) Solve $p x^{2}(y-z)+q y^{2}(z-x)=(x-y) z^{2}$.

