Enrollment No:	_
----------------	---

PARUL UNIVERSITY FACULTY OF AGRICULTURE B.Tech. Winter 2019 - 20 Examination

Semester Subject C Subject N	Code: 20	0103153	Date: 12/12/2019 Fime: 10:30 am to 12:30 pm Fotal Marks: 50
Instructio			
		re compulsory. ight indicate full marks.	
3. Make s	uitable a	assumptions wherever necessary.	
4. Start ne	ew quest	ion on new page.	
Q.1			
A)	Fill iı	the blanks (Each of 0.5 Mark)	(05)
	i)	The general integral of $2p + 3q = z$ is	
	ii)	The Wronskian of two functions x and x^2 is	
	iii)	The one dimensional heat equation is defined as	
	iv)	If $u = x^2 + y^2$ is harmonic, then the corresponding analytic function	
		$f(z) = \underline{\qquad}.$	
	v)	The equation $ z = 2$ represents	
	vi)	If $z = x + iy$ then $ z $ is	
	vii)	The real part of $f(z) = 3z + 2$ is	
	viii)	The special function $P_n(x)$ is roots of differential equation.	
	ix)	Linear partial differential equation can be solved by method	od.
	x)	The Bernoulli equation $\frac{dy}{dx} + p(x)y = Q(x)y^n$ can be reduced to sepa	ration of

The Bernoulli equation $\frac{dy}{dx} + p(x)y = Q(x)y^n$ can be reduced to separation of variable equation by using the substitution n =______. X)

Multiple Choice Questions (Each of 0.5 Mark) B)

 $\left[1 + (y')^2\right]^{\frac{1}{2}} = y''$ is a differential equation with order _____ and degree _____.

a)	2, 2	b)	3, 2
c)	2, 4	d)	4, 2

ii)

Which of the following equation is not a differential equation?

a)	$(y^2 - x^2)dx + 2xydy = 0$	b)	(x3 + 3xy2)dx + (3x2y + y3)dy = 0
c)	x + 2y = 0	d)	$ye^{x}dx + (2y + e^{x})dy = 0$

(10)

Seat No:_

iii) A complete integral of the second order linear differential equation is having _____ arbitrary constants.

a)	3	b)	2
c)	1	d)	0

Which of the following is a suitable y_p for the differential equation iv)

 $y'' + 2y = x^2$ in undetermined coefficient method?

a)	$y_p = Ax + B$	b)	$y_p = Ae^{-2x}$
c)	$y_p = Ax^2 + Bx + c$	d)	None of these

v)

Which of the following is not a solution of Bessel's equation?

a)	$J_n(x)$	b)	$P_n(x)$		
c)	$J_{-n}(x)$	d)	None of these		
The differential equation $x \frac{dy}{dx} + 1 = x$, $x(0) = 1$ has					

vi) The differential equation
$$x \frac{d}{dx}$$

a)	a unique solution	b)	two solutions
c)	infinite number of solutions	d)	no solution

vii) Let *W* is Wronskian. If _____, then the set is linearly dependent.

a)	W = 0	b)	$W^2 \neq 0$
c)	$W \neq 0$	d)	none of these

The value of $\sin n\pi$ when n = 200 is _____. viii)

a)	200	b)	2
c)	1	d)	0

The period of trigonometric function sin *x* is _____. ix)

a)	2π	b)	0	
c)	π	d)	3π	
is an again function of t'				

x)

is an even function of I .				
a)	t^3	b)	sin t	
c)	cos t	d)	t^5	

Which of the following is Dirichlet's condition? xi)

a)	f(x) is not periodic.	b)	f(x) is infinite.
c)	f(x) is single valued function.	d)	None of these

xii) The value of $\int_0^{2\pi} \cos 3x \sin x \, dx =$ _____.

a)	0	b)	π
c)	$-\pi$	d)	None of these

xiii) The value of $|e^{i\pi}|$ is _____.

a)	1	b)	1 + <i>i</i>
c)	-1	d)	None of these

xiv)

If $f(z) = z + \overline{z}$, then imaginary part of f(z) is _____.

a)	2 <i>x</i>	b)	2 <i>y</i>
c)	0	d)	None of these

xv) The solution of xp + yq = z is_____.

a)	$f(x^2, y^2) = 0$	b)	f(xy,yz)=0
c)	f(x,y) = 0	d)	$f\left(\frac{x}{y},\frac{y}{z}\right) = 0$

xvi) If
$$u = x^2 + 4t^2$$
 is a solution of $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$, then $c =$ _____

a)	1	b)	2
c)	0	d)	None of these

xvii) The partial differential equation
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 6$$
 is_

a)	Elliptic	b)	hyperbolic
c)	Parabolic	d)	None of these

xviii) Which of the following is one dimensional Laplace equation?

a)	$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$	b)	$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$
c)	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	d)	None of these

xix) Which of the following partial differential equation has the general solution pq = 1?

a)	z = x + y + c	b)	$z = \frac{1}{b}x + ay + c$
c)	$az + b = a^2x + y$	d)	None of these

xx) The degree and order of the partial differential equation

 $p^2 + q^2 = z$ are _____.

a)	1,2	b)	2,1
c)	1,1	d)	None of these

Q.2A) Define the following (Any five out of seven questions)

- (1) Which is necessary condition for an exact differential equation?
- (2) State formula of solution of Bessel's differential equation.
- (3) Find singular points of the equation $(1 + x^2)y'' 3xy' 2y = 0$.
- (4) Find product of 2 + 3i and -1 + i.
- (5) State Cauchy-Riemann's equation.
- (6) Give example of non-linear partial differential equation.
- (7) Write example of second order first degree partial differential equation.

Q.2 B) Answer the following (Any five out of seven questions)

- (1) Define linear differential equation.
- (2) Define particular solution of a differential equation.
- (3) Define Cauchy-Legendre's differential equation with variable coefficient.
- (4) Define complex number.
- (5) Define half range Fourier series.
- (6) Solve $z = px + qy + \sqrt{1 + p^2 + q^2}$.
- (7) State one dimensional Heat equation.

Q.3 Write Short notes (Any five out of six questions)

- (1) Solve $y^2 y' = 2x^2$.
- (2) Solve $(D^2 + 2D + 1)y = 0$.
- (3) Show that $u = 2x x^3 + 3xy^2$ is harmonic.
- (4) Find the Fourier sine series of f(x) = x in $0 < x < \pi$.
- (5) Solve $p^2 + q^2 = x + y$.

(6) Form a partial differential equation for the equation $z = (x^2 + a)(y^2 + b)$.

Q.4 Long Questions (Any three out of four questions)

- (1) Solve $y'' + 2y' + y = 2\cos 2x + 3x + 2 + 3e^x$.
- (i) Express half range cosine series of f(x) = e^x in the interval (0, π).
 (ii) Check whether the function f(z) = |z|² is analytic or not?
- (3) Obtain the Fourier series of the function, $f(x) = \frac{\pi x}{2}$, $0 \le x \le 2\pi$ and prove that

$$1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$

(4) Solve
$$px^2(y-z) + qy^2(z-x) = (x-y)z^2$$
.

(15)

(10)

(05)

(05)