B.Sc.(Hons.) Agriculture Winter 2019-20 Examination

Semester: 3

Date: 27/11/2019
Subject Code: 20111202
Time: 2:00 pm to 4:30 pm
Subject Name: Statistical methods
Total Marks: 50

Instructions

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.

Q. 1 Do as Directed.

A. Fill in the blanks. (Each of $\mathbf{0 . 5}$ mark)

1. For a sample 15 observations, degree of freedom for mean is \qquad —.
2. \qquad .error occurs in sampling.
3. If sum of squares for samples is 4 and degrees of freedom is 2 , then the mean sum of squares for samples is \qquad -.
4. If $p=0.6$, then $q=$ \qquad -.
5. If $b_{x y}=-1.4$ and $b_{y x}=0.9$, then is it true or false? \qquad .
6. If the coefficient of correlation between x and y i.e. $r=0$, then x and y have
\qquad .correlation.
7. If the number of observation can be counted and is definite then it is called
\qquad
8. For a two tail t-test at 5% significance level with degrees of freedom $=5$, the table value of t i.e. $t_{t a b}=$ \qquad .(use table)
9. For a Poisson variable, mean $=6.2$ and variance $=$ \qquad .
10. For $x=1,1,1,2,2,5,4,2,7,2$ mode= \qquad .
B. Multiple choice type questions. (Each of 0.5 mark)
11. The observation occurring most frequently is known as \qquad
a) mode
c) median
b) mean
d) none of these
12. If mean=median $=$ mode then the data distribution is said to be \qquad
a) symmetric
c) asymmetric
b) irregular
d) none of these
13. The probability that we are living in the year of 2018 is \qquad .
a) 0
b) 0.5
c) 1
d) 1.5
14. A hypothesis complementary to the null hypothesis is called \qquad hypothesis.
a) alternate
c) null
b) initial
d) none of these
15. If $\beta_{1}>0$, then the data distribution is \qquad .skewed
a) negatively
c) positively
b) not
d) none of these
16. If a coin is tossed once what is the probability of getting a tail?
a) 1.1
b) 0.3
c) 0.5
d) 0
17. .is the procedure to decide whether to accept or reject the null hypothesis .
a) census
c) hypothesis testing
b) sampling
d) none of these
18. ANOVA stands for \qquad .
a) Analysis of variable
c) Analysis of variance
b) Analysis of various attributes
d) none of these
19. If $F_{c a l}<F_{t a b}$, then the null hypothesis for F-test is \qquad .
a) rejected
c) not applicable
b) accepted
d) none of these
20. For the hypothesis, $H_{0}: \mu_{1}=\mu_{2}$ and $H_{1}: \mu_{0} \neq \mu_{1}$, the it is \qquad .- tail t-test
a)one
c) three
b) two
d) none of these
21. Which of the following is true ($p=$ probability)?
a) $0<p<1$
b) $0 \leq p \leq 1$
c) $p>1$
d) $p<0$
22. If $n(A)=6$ and $n(S)=12$, then find $P(A)=$
a) 0.1
b) 0.5
c) 0.3
d) 0
23. In complete enumeration \qquad units of population are under study
a) few
c) all
b) zero
d) none of these
24. If $n=10$ and $p=0.5$ for binomial distributed random variable X , then the mean $=$ \qquad
a) 4
b) 6
c) 5
d) 7
25. The median for the data $x=1,4,5,6,7$ is \qquad
a) 4
b) 6
c) 5
d) 7
26. Which of the following is the measure of central tendency?
a) mean
c) mode
b) median
d) all the three options
27. If a dice is rolled, what are the total number of outcomes possible?
a) 4
b) 7
c) 3
d) 6
28. $P(A)+P(B)-P(A \cap B)=$ \qquad
a) $P(A)$
b) $\mathrm{P}(\mathrm{B})$
c) 0
d) $P(A \cup B)$
29. Relation between mean, median and mode is
a) Mode=3 median -2 mean
c) Mode=3 median +2 mean
b) 2 Mode $=3$ median -2 mean
d) None of these
30. If the coefficient of correlation between x and y i.e. $r<0$, then x and y have
\qquad correlation.
a) no
c) positive
b) strong
d) negative

Q. 2 Do as Directed.

A. Define the following. (Any five out of seven)

1. Sample space
2. Sampling
3. Null hypothesis
4. Probability of an event A
5. Mode
6. Statistic
7. Infinite population
B. Answer the following. (Any five out of seven)
8. If $\sigma=6$ and $\bar{x}=12$, then find $C V$.
9. Find the mode of the following:

x	1	2	4
f	4	3	2

3. The two regression coefficients are $b_{x y}=0.785$ and $b_{y x}=1.1746$. Find the correlation coefficient between x and y.
4. State the formula to find mean.
5. For poisson variable, $\lambda=1.8$, find $\mathrm{P}(\mathrm{X}=0)$
6. Sampling is better than complete enumeration. (True/ false)
7. Find mean, if mode $=4$ and median $=3.7$

Q. 3 Write short notes. (Any five out of six)

1. Two workers on the same job show the following results over a long period of time:

	Worker A	Worker B
Mean time (min)	30	25
Standard deviation (min)	6	4

Find coefficient of variation (CV) for each of the workers. Determine who is more variable.
2. Find the number of all the possible samples when a sample of size 4 units is selected from the population of size 7 units if the sampling is done (a) with replacement (b) without replacement.
3. Form a sample of size 7 with replacement from a population of size 40 using the following random numbers:
4. If A and B are two events and $P(A)=0.5, P(B)=0.2, P(A \cap B)=0.3$ then find $P(A \cup B)$.
5. Find the missing values in the following one-way ANOVA table:

Source	SS	df	MS	F_{C}
Samples		5		
Error	30			
Total	130	15		

6. The mean and standard deviation of binomial distribution is 5 and 2 respectively, find n, p and q.

Q. 4 Long Questions/Example (Attempt any three out of four)

1. In an industry for 100 workers are classified according to their performance and training received or not received as the given below table. Test the independence of performance and training performed using χ^{2} test at 5\% significance level.

	Performance	
	Good	Not good
Trained	30	20
Untrained	40	10

$\left(\chi_{\text {tab }}^{2}=3.84\right.$ at $\alpha=5 \%$ and $\left.d f=1\right)$
2. A sample of 10 observations have mean $\bar{x}=67.8$ and standard deviation $s=2.8566$. test the hypothesis that the population mean is 66 at 5% significance level.
3. A card is selected from a pack of 52 playing cards. Find the probability that the selected card is (a) a king card (b) a red card (c) a face card (d) a spade card (e) with number between 2 and 7 (not including 2 and 7).
4. Prepare one-way ANOVA table for the following data:

Number of samples: 3
Total number of observations: 15 (5 in each sample)
Sum of squares due to samples: 40
Total sum of squares: 100

t Table

cum. prob	$\boldsymbol{t} .50$	$\boldsymbol{t} .75$	$\boldsymbol{t} .80$	$\boldsymbol{t}_{.85}$	$\boldsymbol{t} .90$	$\boldsymbol{t} .95$	$\boldsymbol{t} . .975$
one-tail	$\mathbf{0 . 5 0}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 2 0}$	$\mathbf{0 . 1 5}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 2 5}$
two-tails	$\mathbf{1 . 0 0}$	$\mathbf{0 . 5 0}$	$\mathbf{0 . 4 0}$	$\mathbf{0 . 3 0}$	$\mathbf{0 . 2 0}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 0 5}$
$\mathbf{d f}$							
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228

