Semester: 1
 Subject Code: 20116101

Date: 16/04/2019

Subject Name: Elementary Mathematics

Instructions

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.

Q. 1 Do as Directed.

A. Fill in the blanks. (Each of $\mathbf{0 . 5}$ mark)

1. Derivative of $\sin x$ is.
2. Two matrices can be added if and only if they have \qquad order/dimension
3. A matrix with order 3×4 has \qquad rows and \qquad columns.
4. $\lim _{x \rightarrow 1} 7 x=$ \qquad
5. Every square matrix is associated to an expression or a number known as \qquad
6. The radius of the circle $x^{2}+y^{2}=1$ is \qquad
7. $\frac{d}{d x}\left(4 x^{2}\right)=$ \qquad
8. $\int \cos x d x=$ \qquad
9. Equation of a circle having centre (a, b) and radius r is given by \qquad .
10. If $A=\left[\begin{array}{cc}2 & 1 \\ -1 & 5\end{array}\right]$, then $A^{T}=$
B. Multiple choice type questions. (Each of 0.5 mark)
11. The value of $\cos 90^{\circ}$ is
a)0
c) 1
b) -1
d)None of the above
12. If $A=\left[\begin{array}{ll}2 & -4 \\ 3 & -8\end{array}\right]$, then order of A is
a) 2×2
b) 3×2
c) 2×3
d) 3×3
13. Inverse of a matrix exists only if
a) $|A|=0$
b) $[A]=0$
c) $|A| \neq 0$
d) $[A] \neq 0$
14. $\frac{d}{d x}\left(x^{5}\right)=$ \qquad
a) $5 x$
b) $x 5$
c) $5 x^{4}$
d) $5 x^{3}$
15. Equation of normal to the circle $x^{2}+y^{2}=r^{2}$ at a point $\left(x_{1}, y_{1}\right)$ on the circle
a) $y x_{1}-x y_{1}=0$
b) $c= \pm a \sqrt{1+m^{2}}$
c) $x x_{1}+y y_{1}=r^{2}$
d) $x^{2}+y^{2}=a^{2}$
16. If $A=\left[\begin{array}{ll}2 & -4 \\ 3 & -8\end{array}\right]$, then A^{T} will be
a) $\left[\begin{array}{cc}2 & 3 \\ -4 & -8\end{array}\right]$
c) $\left[\begin{array}{ll}2 & -4 \\ 3 & -8\end{array}\right]$
b) $\left[\begin{array}{ll}2 & 4 \\ 3 & 8\end{array}\right]$
d)None of the above
17. The set of all points in a plane at a fixed distance from a fixed point in the plane is called
a)line
c) circle
b)centre
d)radius
18. Equation of tangent to the circle $x^{2}+y^{2}=r^{2}$ at a point $\left(x_{1}, y_{1}\right)$ on the circle
a) $y x_{1}-x y_{1}=0$
b) $c= \pm a \sqrt{1+m^{2}}$
c) $x x_{1}+y y_{1}=r^{2}$
d) $x^{2}+y^{2}=a^{2}$
19. The derivative constant is
a) 0
c) 1
b) does not exist
d)none of the above
20. $\int x d x=$
a) x^{2}
c) $x^{2} / 2$
b) 1
d) None of the above
21. $x^{2}+y^{2}+2 g x+2 f y+c=0$ is the equation of a circle whose centre is
a) $(-g,-f)$
b) $(-g, f)$
c) $(g,-f)$
d) (g, f)
22. Find the value of the determinant $A=\left|\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right|$
a)2
c) 1
b) 0
d) -2
13.Intercept form of equation of line is \qquad
c) $\frac{x}{a}+\frac{y}{b}=1$
a) $y-y_{0}=m\left(x-x_{0}\right)$
d)none of the above
b) $y=m x+b$
23. Distance between two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is given by
a) $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
c) $\sqrt{\left(x_{1}+x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2}}$
b) $\sqrt{\left(x_{1}-x_{2}\right)^{2}-\left(y_{1}-y_{2}\right)^{2}}$
d)None of the above
24. Find the equation of a straight line parallel to y-axis at a distance of 5 units on the right of the y axis.
a) $x=5$
b) $y=5$
c) $x=-5$
d) $y=-5$
25. $\frac{d}{d x}\left(\tan ^{-1} x\right)=$ \qquad
c) $\frac{1}{1-x^{2}}$
a) $\frac{1}{1+x^{2}}$
d) $-1 / \sqrt{1-x^{2}}$
b) $1 / \sqrt{1-x^{2}}$
26. If A is having dimension 2×4 and B is having dimension 4×3 then dimension of $A B$ will be
a) 4×4
c) 3×2
b) 2×3
d) not defined
27. If the equation of circle is $(x-2)^{2}+(y+4)^{2}=9$, then
a) center $=(-2,-4)$ and radius $=9$
b) center $=(4,-2)$ and radius $=3$
c) center $=(2,-4)$ and radius $=9$
d) center $=(2,-4)$ and radius $=3$
28. The distance between points $A(2,2)$ and $B(1,1)$ is
a) $\sqrt{2}$
b) 1
c) 9
d) -9
29. $\lim _{x \rightarrow-1}\left(2 x^{2}+2\right)$
a)2
c) 1
b) 4
d) -2

Q. 2 Do as Directed.

A. Short Questions. (Any five out of seven)

1.Does a circle have unique radius? Yes or No
2. Write the equation of circle with centre $(0,0)$ and radius 1.
3. Write the point slope form of equation of line.
4. What is the derivative of $\cos x$
5.Define Transpose of a matrix.
6. If $A=\left[\begin{array}{ll}3 & 0 \\ 2 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 2 \\ 0 & 4\end{array}\right]$ find $A B$.
7.Can we find value of a Matrix?

Yes or No
B. Answer the following. (Any five out of seven)

1. Evaluate $\int x^{4} d x$.
2. Find the equation of circle whose diameter is line joining the points $(1,3)$ and $(2,-1)$.
3. Find $\frac{d}{d x}\left(\cos ^{-1} x\right)$
4. If $d((x,-1),(3,2))=5$, find x.
5.. If $y=\sin 2 x$, find $\frac{d y}{d x}$
6.Find the value of the determinant $A=\left|\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right|$
5. What is the transpose of the matrix $A=\left[\begin{array}{cc}1 & 0 \\ -2 & 3 \\ 4 & 8\end{array}\right]$

Q. 3 Answer the following: (Any five out of six)

1. Write the equation of the line in slope-intercept form with a slope of 7 and a y-intercept of $\mathbf{- 4}$.
2. If $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]$ find (i) $A+B$ (ii) $A-B$
3. Estimate the value of the following $\operatorname{limit}_{\lim }^{x \rightarrow 4}$ ($\left.\frac{x^{2}-4}{2 x}\right)$
4. If $x^{2}+y^{2}-3 x+3 y+10=0$ is equation of a circle, find its centre and radius.
5. Examine the continuity of $\mathrm{f}(\mathrm{x})$ at $x=1$:

$$
f(x)=\left\{\begin{array}{cc}
3 x-5, & \text { if } x \neq 1 \\
2, & \text { if } x=1
\end{array}\right.
$$

6. Evaluate $\int x \cos x d x$

Q. 4 Long Questions/Example (Attempt any three out of four)

1. If $y=\cos x+x^{3}+\log x+2 e^{x}$, then find $\frac{d y}{d x}$.
2. If $A=\left[\begin{array}{ll}2 & -1 \\ 4 & -4\end{array}\right]$ then find the value of the determinant, trace and find A^{-1}.
3. Find the co-ordinates of the point which divides $A B$, where A and B have the coordinates $(2,4)$ and $(4,6)$ respectively in the ratio $1: 3$ (i) internally (ii) externally.
4. Find the equation of the circle passes through three points $(1,0),(-1,0)$ and $(0,1)$. Also, write the centre and radius of the equation of the circle obtained.
