Enrollment No: _____

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY M.Tech. Summer 2017 - 18 Examination

Semester: 2 Subject Code: 03214152 Subject Name: Hydrologic Modelling	Date: 21/05 /2018 Time: 2.00 pm to 4.30 pm Total Marks: 60		
Instructions:			
1. All questions are compulsory.			
 Figures to the right indicate full marks. Make suitable assumptions wherever necessary. 			
4. Start new question on new page.			
Q.1 (A) Following are the viscosity readings on a mixture of raw materia	al ·		
22.02, 23.83, 26.67, 25.38, 25.49, 23.50, 25.90and 24.98.		(05)	
Illustrate the Box plot for the mixture- viscosity data.		(03)	
(B) If a random variable has the standard normal distribution, find	the probability that it		
will take on a value :	the probability that it	(05)	
i) less than 2, ii) less than -1.40 , iii) greater than 2.84, iv) great	or then 1.80	(05)	
(C) Fill in the blanks :	$e_1 u_1 a_1 - 1.00$.		
a) A time series consists of two general types of variations			
b) Both types of variation must be in ord			
that can be used to predict or synthesize expected values and future			
c) An upward-sloping trend due to urbanization or the annual variat		(05)	
	ion of an temperature	(03)	
could be modelled as	form compared alternation		
d) Time series modelling that relies on the analysis of data involves	four general phases.:		
Q.2 Answer the following questions. (Attempt any three)		(15)	
A) Formulate a rainfall runoff model assuming the values of k as following data :	nd p_0 with the help of the		
Rainfall, cm : 29.8, 12.1, 18.5, 11.4, 6.6, 10.6, 9.2, 10.58, 1 21.03	.1, 0.85, 8.85 and		
Runoff, cm: 15.9, 9.1, 10.7, 10.9, 7.8, 5.8, 3.5, 2.83, 1 5.13	.65, 1.38, 2.1 and		
B) Validate the above model by RMSE			
C) Validate the above model by Refined index of agreement			

D) Validate the above model by Theil's U index of inequality

Q.3 A) The following data measured from 18 debris in Narmada river were subjected to a Dixon–Thompson test :
700, 690, 670, 800, 339, 160, 1039, 1192, 630, 1120, 664, 30, 1240, 150, 730, 203, 571, 190 m³ / Km².
Evaluate the data for either a low or high outlier while assuming a normal distribution.

Q.3 B) Consider the time series X_t given in the second row of the following data : t:1,2,3,4,5,6,7 X_{t} , 9,8,10,9,11,10,13 Which has a sample size of 7. Compute the lag – 1 autocorrelation coefficient. (08)

OR

Q.3	B) W r t data given in (Q.3(B),	compute the $lag - 2$ autocorrelation coefficient .	(08)
-----	---	---------	---	------

Q.4 A)W r t the following data what is the probability of having the maximum flood having 100 (07) years event ?
21300, 17200, 14400, 13300, 12700, 10200, 9440, 9110, 8490, 8150, 7400, 7180, 6730, 6670, 6550, 6040, 6000, 6150, 6730, 7220, 7580, 8400, 8650, 9360, 9900, 11400, 13100, 13500, 15000, 19100 cumec .

OR

Q.4	A) W r t data in	Q. 4 (A)	What is the	probability	of having a	a flood of	12000 cumec ?	(07)
------------	-------------------------	----------	-------------	-------------	-------------	------------	---------------	------

Q.4 B) Discuss moving average filtering in time series analysis

(08)