Seat No: ______ Enrollment No: _____

PARUL UNIVERSITY

FACULTY OF ENGINEERING & TECHNOLOGY

M.Tech. Summer 2017 - 18 Examination

Semester: 2 Date: 28/05/2018

Subject Code: 03210182 Time: 2.00 pm to 4.30 pm

Subject Name: Design of Heat Exchangers Total Marks: 60

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.
- **Q.1** A) List classification of Heat Exchanger.
 - B) Derive the LMTD for Parallel flow Heat Exchanger. (05)
 - C) Explain Water-Cooling Evaporators.

Q.2 Answer the following questions. (Attempt any three) (Each five mark) (15)

- A) Why Compact Heat Exchangers are more suitable for Gaseous Fluid?
- B) What is Fouling? Explain types & Mechanism of Fouling.
- C) Explain basic Design Procedure of Shell and Tube Heat Exchanger.
- D) Explain basic criteria for Selection of Heat Exchanger.
- Q.3 A) Explain Various "TEMA Standard" shell Design's for the Shell & Tube Heat Exchangers. (07)
 - B) In a shell and tube heat exchanger, the water passes through the tube and steam passes into the shell. Dry saturated steam is condensed at a 400 °C while the water is heated from 30 °C to 70 °C. If the overall heat transfer coefficient is 800 W/m²k and surface area 1.2 m², find the rate of heat transfer in the following arrangement of flow i) Parallel flow ii) Counter flow iii) Cross Flow (Take Correction Factor F=1)

OR

- B) What is Hairpin Heat Exchanger? Explain Thermal & Hydraulic Analysis of Inner tube & annulus. (08)
- Q.4 A) State & Explain the Advantages & Limitations of Plate Heat Exchanger. Also state its different application in various industries with reasons.

OR

- A) Explain Evaporative Condenser.
 - B) Hot oil enters into a counter flow heat exchanger at 150 °C and leaves at a 40 °C. The mass flow rate of is 4800 kg/hr of specific heat 2kJ/kg k. The pill is cooled by water which enters Exchanger at 20 °C. The overall heat transfer coefficient is 1400 W/m²K. The exit temperature of water is not to exceed 80 °C. Using effectiveness-NTU method, find: 1) Mass flow rate of water. 2) Surface area required. 3) Effectiveness of heat exchanger.

(05)

(05)

(07)