Enrollment No: _____

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY M.Tech. Summer 2017 - 18 Examination

VI. Fech. Summer 2017 - To Examination			
Semester: 2 Subject Code: 03203155 Subject Name: Electrical Machine Modelling		Date: 28/05/2018 Time: 2:00 pm to 4.30 pm Total Marks: 60	
Inst	ructions:		
1. A	ll questions are compulsory.		
2. F	igures to the right indicate full marks.		
3. N	lake suitable assumptions wherever necessary.		
4. S	tart new question on new page.		
Q.1	A) State the principles of Electromechanical energy conversion		(05)
	B) A two winding magnetically coupled system has N1 turns in primary a	nd N2 turns in secondary	
	windings. Show the relationship between magnetizing inductances Lm1 a respectively	and Lm2 of the windings	(05)
	C) Distinguish between the leakage flux and fringing flux.		(05)
Q.2	Answer the following questions. (Attempt any three) (Each five mark)		(15)
	A) Define and write relation for stored magnetic energy		
	B) Explain Reference frame theory.		
	C) Enumerate the merits of the application of reference frame theory to elec	trical machines	
	D) Explain why two phase quantities appear as constant quantities in synchr reference frame	onously rotating	
Q.3	A) Obtain the energy balance equation of an electro mechanical system		(07)
	B) Derive the expressions for stored magnetic energy in a singly excited sy	stem	(08)
	OR		
	B) Explain λ -i characteristic of magnetic system. Also derive expression for Assume λ -i relationship of magnetic circuit is linear	co-energy density.	(08)
Q.4	A) Derive the general expression for force and torque of a singly excited rot OR	ating actuator.	(07)
	A) Describe the formulation of transformation of 3 phase variables to a stati	onary reference frame	(07)
	B) Apply qd0 transformation to series RL circuit and derive an expression f	or current and voltage	(08)
	without mutual inductance		()