\qquad
PARUL UNIVERSITY

FACULTY OF ENGINEERING \& TECHNOLOGY
 M.Tech., Summer 2017-18 Examination

Semester: 1

Date: 22-05-2018
Subject Code: 03209101
Time: 02:00PM to 04:30PM
Subject Name: Matrix Methods of Structural Analysis

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 A) Obtain global member stiffness matrix for member AB of a rigid frame shown in the Figure 1.

Take $\mathrm{AE}=30 \times 10^{3} \mathrm{kN}$ and $\mathrm{EI}=60 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$.
B) Explain the types of non-linearity. Also state the assumptions for a non-linear analysis.
C) Obtain the combined joint load vector, A_{C} for the continuous beam as shown in the Figure 2. Assume EI is constant for all the members.
Q. 2 Answer the following questions. (Attempt any three)
A) Derive stiffness matrix for a beam member and a plane frame member with proper notations and figures.
B) Briefly explain the concept of substructure analysis.
C) Find the global flexibility matrix for a truss as shown in the Figure 3.
D) Explain Newton Raphson's method of non-linear structural analysis.
Q. 3 A) Using the concept of symmetry, determine the deformations produced in the beam as shown in the Figure 4 below using stiffness member approach.
B) Derive the relation $S_{M S}=R_{T}{ }^{T} S_{M} R_{T}$ with usual notations.

OR

B) Determine the member end actions for a plane frame as shown in the Figure 5 using flexibility member approach.
Q. 4 A) Determine the reactions developed in the truss as shown in the Figure 6, if support A moves to left by 2 mm and support B sinks down by 3 mm . Take $\mathrm{AE}=32000 \mathrm{kN}$.

OR

A) Analyse the propped cantilever beam loaded as shown in Figure 7 using flexibility member approach.
B) Analyse the beam shown in the Figure 8 below by stiffness member approach and plot SF and BM diagram.

Figure 1

Figure 3

Figure 2

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

