PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY M.Tech., Summer 2017-18 Examination

Semester: 1	Date: 22-05-2018
Subject Code: 03209101	Time: 02:00PM to 04:30PM
Subject Name: Matrix Methods of Structural Analysis	Total Marks: 60
Instructions:	

1. All questions are compulsory.

- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.
- Q.1 A) Obtain global member stiffness matrix for member AB of a rigid frame shown in the Figure 1. (05) Take $AE = 30 \times 10^3 \text{ kN}$ and $EI = 60 \times 10^3 \text{ kN}.\text{m}^2$.
 - B) Explain the types of non-linearity. Also state the assumptions for a non-linear analysis. (05)
 - C) Obtain the combined joint load vector, A_C for the continuous beam as shown in the Figure 2. (05) Assume EI is constant for all the members.
- Q.2 Answer the following questions. (Attempt any three)
 - A) Derive stiffness matrix for a beam member and a plane frame member with proper notations and figures.
 - B) Briefly explain the concept of substructure analysis.
 - C) Find the global flexibility matrix for a truss as shown in the Figure 3.
 - D) Explain Newton Raphson's method of non-linear structural analysis.
- Q.3 A) Using the concept of symmetry, determine the deformations produced in the beam as shown in (07) the Figure 4 below using stiffness member approach.
 - B) Derive the relation $S_{MS} = R_T^T S_M R_T$ with usual notations. (08)

OR

- B) Determine the member end actions for a plane frame as shown in the **Figure 5** using flexibility (08) member approach.
- Q.4 A) Determine the reactions developed in the truss as shown in the Figure 6, if support A moves to (07) left by 2mm and support B sinks down by 3mm. Take AE = 32000 kN.

OR

- A) Analyse the propped cantilever beam loaded as shown in **Figure 7** using flexibility member (07) approach.
- B) Analyse the beam shown in the **Figure 8** below by stiffness member approach and plot SF and **(08)** BM diagram.

(15)

Figure 2

Figure 4

