Seat No: _____

Enrollment No:

PARUL UNIVERSITY

FACULTY OF ENGINEERING & TECHNOLOGY

M.Tech. Winter 2017 - 18 Examination

Semester: 2 Date: 09/01/2018

Subject Code: 03216153 Time: 2:00 pm to 4:30 pm

Subject Name: Quantitative Methods in Construction Management Total Marks: 60

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.
- Q.1 A) Explain: (i) Max-min
- (ii) Min-max

(05)

- B) Explain: (i) Dominance rule
- (ii) Zero sum game

(05)

- C) Explain: (i) Saddle point
- (ii) Pay-off matrix

(05) (15)

(07)

- **Q.2** Answer the following questions. (Attempt any three) (Each five mark)
 - A) A firm has six project sites and cement plants at place A, B and C with daily production of 50, 40, and 60 MT respectively. At point D, E and F it has three warehouses with daily demands of
 - 20, 95 and 35 MT respectively. Per MT the shipping cost is given below:

Plant	warenouse			
	D	E	F	
A	6	4	1	
В	3	8	7	
C	4	4	2	

If the firm wants to minimize the total transportation cost, how should it route its cement?

- B) For the same data of Q.2 (A) follow the optimality test by stepping stone method.
- C) For the same data of Q.2 (A) follow the optimality test by MODI method.
- D) Explain the pitfalls of CPM/PERT in detail.
- **Q.3** A) For given problem answer the following with reasons:

en problem answer the following with reasons.						
Bas	sis	X_1	X_2	S_1	$\overline{S_2}$	b_i
X_2	5	1	1	1	0	10
S_2	0	1	0	-1	1	3
C	i	4	5	0	0	
Solu	tion	0	10	0	3	
Λ		-1	0	-5	0	

- 1. Is the solution is optimal?
- 2. Is this solution degenerate?
- 3. Is this solution feasible?
- 4. If S₁ is slack in machine A (in Hrs/Week) and S2 is slack in machine B (in Hrs/Week), which of these machine is being used to the full capacity when producing according to this solution?
- 5. Machine A has to be shut down for repairs for 2 hours next week. What will be the effect on profits?
- B) Solve the LPP with graphical method.

(08)

Maximize $Z = 2X_1 + X_2$

Subjected to,

$$X_1 + 2X_2 \le 10$$
; $X_1 + X_2 \le 6$; $X_1 - X_2 \le 2$; $X_1 - 2X_2 \le 1$; X_1 and X_2 are positive.

OR

B) Solve the given LPP with simplex method.

(08)

Maximize Z = 40X1 + 35X2

Subjected to,

 $2X1 + 3X2 \le 60$; $4X + 3X2 \le 96$; X_1 and X_2 are positive.

- Q.4 A) Two construction firms are competing to implement different strategies in order to increase number of projects. The tactics are given as follows:
 - (i) Increase advertising (ii) Price reduction (iii) Give discount on second project Following is the effect on clients under different tactics:
 - 1. If both the firms use same strategies than, both will be equally benefited.
 - 2. If firm A applies increasing advertisement, 30% of clients in price reduction by firm B

- and 25% of clients with giving discount on second project.
- 3. If firm A applies price reduction, 60% of clients in increasing advertisement by firm B and 40% of clients with giving discount on second project.
- 4. If firm A applies discount on second project, 81% of clients with increasing advertisement by firm B and 47.5% of clients with price reduction.

What should be the optimal policies for both companies? Find out value of game.

OR

- A) Explain "Analytical Hierarchy Approach" in detail with suitable example.
- B) Solve the following pay-off matrix for player A. Also find out the optimal strategies and value of the game using arithmetic method. (08)

		Player B		
		\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3
Player A	A_1	1	0	2
	A_2	3	0	0
	A_3	0	2	1

(07)