Seat No: _____ Enrollment No:

PARUL UNIVERSITY

FACULTY OF ENGINEERING & TECHNOLOGY

M.Tech., Winter 2017 - 18 Examination

Semester: 1 Date: 30/12/2017

Subject Code: 03217103 Time: 02:00 pm to 04:30pm

Subject Name: Kinematics and Dynamics of Machinary

Total Marks: 60

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.
- Q.1 A) Define mobility and explain criterion of Gruebler and Kutzback with reference to it. (05)
 - B) Using Energy Method and Rayleigh Method prove $\omega = \sqrt{k/m}$ (05)
 - C) Explain algebraic solution approach using inverse kinematics for coordinate frame assignment for planer manipulator. (05)
- **Q.2** Answer the following questions. (Attempt any three)

(15)

- A) Derive differential equation of motion for single degree of freedom using Newton's method.
- B) Short note on Inverse Kinematics.
- C) Explain Graphical method for determining three precision points.
- D) Enlist methods of velocity analysis of mechanism and Explain relative velocity method.
- Q.3 A) Define function Generation and Prove freudenstein's equation for four bar mechanism. (07)
 - B) Design a four link mechanism to coordinate three positions of the input and output links as follow: (08)
 - $\theta 1 = 20^{\circ}, \theta 2 = 35^{\circ}, \theta 3 = 50^{\circ} \text{ and } \emptyset 1 = 35^{\circ}, \emptyset 2 = 45^{\circ}, \emptyset 3 = 60^{\circ}$

OR

B) Using Holzer Method find the natural frequencies of the system shown in figure 1, Assume $m_1 = (08)$ $m_2 = m_3 = 1 \text{kg}$ and $k_1 = k_2 = k_3 = 1 \text{N/m}$.

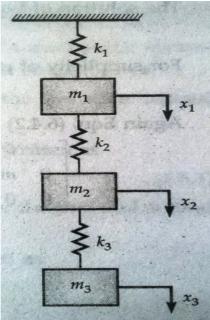


Fig 1: Spring Mass System

Q.4 A) A quick return mechanism of the crank and slotted lever type shaping machine is shown in Fig 2. (07) The dimensions of the various links are as follows:

 O_1O_2 =800mm; O_1B =300mm; O_2D =1300mm;DR=400mm and the crank O_1 B makes an angle of 45° with the vertical and rotates at 40 r.p.m. in the counter clockwise direction. Find: 1. velocity of the ram R, or the velocity of the cutting tool, and 2. angular velocity of link O2D.

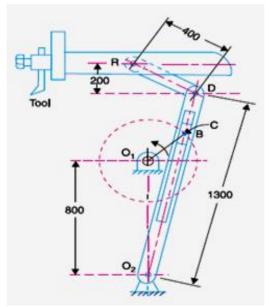


Fig 2: Quick return mechanism

 \mathbf{OR}

A) A four bar mechanism has following dimension:

(07)

DA=300mm,CB=AB=360mm,DC=600mm.The link DC is fixed and the angle ADC is 60°.The driving link DA rotates uniformly at a speed of 100 r.p.m clockwise and the constant driving torque has the magnitude of 50 N-m. Determine the velocity of the point B and angular velocity of the driven link CB .Also find the actual Mechanical Advantage and resisting torque if efficiency of the mechanism is 70%.

B) A four bar mechanism is to be designed by using three precision points to generate the function $y=x^{1.5}$ for the range of $1 \le x \le 4$. Assuming 30° starting position and 120° finishing position for the input link and 90° starting position and 180° finishing position for the output link . Find the values of x, y, θ and Φ corresponding to three precision points.