Enrollment No: _

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY M.Tech. Winter 2017 - 18 Examination

Semester: 1 Subject Code: 03215103 Subject Name: Soil Dynamics and Machine Foundation

Date: 02/01/2018 Time: 02.00pm to 4.30pm Total Marks: 60

Instructions:

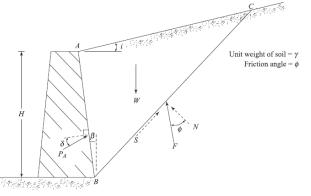
- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

0.1	A) Define following terms: (i) Period (ii) frequency (iii) Resonance (iv) Amplitude (v) cycle	(05)
C.	B) Explain different types of machine foundations with neat sketch	(05)
	C) Define Liquefaction & Explain types of Liquefaction	(05)
Q.2	Answer the following questions. (Attempt any three) (Each five mark)	(15)
	A) Assuming resonance to have occurred at the frequency of 22 cycles/second in a vertical vibration	
	of a test block, 1.0 x 1.0 x 1.0m size, determine the coefficient of elastic uniform in compression	
	(Cu).	
	B) Describe the codal provisions for design and construction of Impact Machine.	
	C) For a machine foundation, given weight of the foundation = 45 kN and spring constant = 10^4	
	kN/m, determine a) natural frequency of vibration, and b) period of oscillation	
	D) For a machine foundation, given weight = 60 kN, spring constant = 11,000 kN/m, and $c = 200$ kN-s/m, determine	
	(a) whether the system is overdamped underdamped or critically damped	

- (a) whether the system is overdamped, underdamped, or critically damped,
- (b) the logarithmic decrement, and
- (c) the ratio of two successive amplitudes
- Q.3 A) Explain pressure bulb theory to calculate natural frequency

B) A machine and its foundation weigh 140 kN. The spring constant and the damping ratio of the soil (08) supporting the soil may be taken as 12×10^4 kN/m and 0.2, respectively. Forced vibration of the foundation is caused by a force that can be expressed as Q (kN) = $Q_0 \sin wt$, $Q_0 = 46$ kN, w = 157 rad/s. determine

(a) the undamped natural frequency of the foundation,


- (b) amplitude of motion, and
- (c) Maximum dynamic force transmitted to the subgrade.

OR

B) Write design criteria of foundations for reciprocating machines as per IS:2974 (08)

Q.4 A) Explain any three mitigation methods of liquefaction

A) As shown in Fig. below If $\beta = 0^\circ$, $i = 0^\circ$, $\phi = 36^\circ$, $\delta = 18^\circ$, H = 4.5 m, $\gamma = 17.6$ kN/m³, ku = 0.2, (07) and $k_h = 0.3$, determine the active force per unit length of the wall.

B) Write short note on Vibration isolation

(08)

(07)

(07)