Enrollment No: ____

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY M.Tech. Winter 2017 - 18 Examination

Semester: 1 Date: 02/01/2018 Subject Code: 03210104 Time: 2:00pm to 4:30pm Subject Name: Advanced Fluid Mechanics Total Marks: 60 Instructions: 1. All questions are compulsory.			
2. Fi 3. M 4. St	gures to the right indicate full marks. Take suitable assumptions wherever necessary. Eart new question on new page.		
Q.1	A) For a steady, incompressible, one dimensional viscous fluid flow through that the velocity is maximum at center line of the pipe.B) Discuss about the pressure wave produced by a body moving with (i) subsor (ii) supersonic speed.	a circular pipe, prove nic speed and	(05) (05)
0.2	C) When does Boundary layer separation takes place? Explain the physics behi separation phenomenon in brief.	nd the Boundary layer	(05)
Q.2	Answer the following questions. (Attempt any three) (Each five mark) A) Explain the physical significance of a Stream Function. B) Sketch steady adiabatic flow ellipse and discuss the same. C) What do you understand by stagnation state and stagnation properties? Also show that $\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2}M^2$.		(13)
Q.3	D) Explain clearly how Fanno line can be plotted on the h-s diagram considual for a flow with friction.A) Explain in brief about the boundary layer formation for the external flow partsB) Derive the general form of continuity equation in Cartesian coordinate system	dering basic equations st a flat surface. m.	(07) (08)
	B) A source with volume flow rate 0.2 m ² /s and a vortex with strength 1 m origin. Determine the equations for velocity potential and stream functions resultant velocity at $x = 0.9$ m and $y = 0.8$ m.	n ² /s are located at the . What would be the	(08)
Q.4	A) Explain the characteristics of a Turbulent flow.		(07)
	 A) How is an oblique shock generated? For an oblique shock, discuss the follow (i) Attached and detached shocks (ii) Reflection of shocks (iii) Interaction of shocks 	ving with sketches,	(07)

B) Derive the general form of Reynolds Transport Theorem and explain its significance. (08)