\qquad
PARUL UNIVERSITY
FACULTY OF ENGINEERING \& TECHNOLOGY

M.Tech., Winter 2017-18 Examination

Semester: 1
Subject Code: 03210103Date: 30/12/2017Subject Name: Advanced ThermodynamicsTime: 02:00PM to 04:30PM

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 A) What is concept of continuum? How will you define density and pressure using this concept?
B) Explain the terms: Reversibility, Irreversibility, Second Law Efficiency.
C) Give the expression for the entropy generation rate for a control volume of steady flow system.
Q. 2 Answer the following questions. (Attempt any three) (Each five mark)
A) Discuss the Fermi-Dirac (F - D) statistics. Compare the Fermi-Dirac, Bose-Einstein and MaxwellBoltzmann statistics when 4 particles are arranged in two energy levels. Two particles are at energy level ε_{1} having a degeneracy $g_{1}=4$ and other two particle at energy level ε_{2} having a degeneracy g_{1} $=2$.
B) Define exergy balance. Explain exergy balance for a steady flow system.
C) State the third law of thermodynamics. Discuss the Physical and chemical facts of the third law.
D) Discuss the principle of Equipartition of energy.
Q. 3 A) Explain the Gouy-Stodola theorem. Write equation for heat transfer through a finite temperature (07)
difference.
B) What is the condition for exact differential? Derive Maxwell's equations.

OR

B) Derive the expression for the irreversibility and second law efficiency of
(A) Steam turbine
(B) compressor
(C) heat exchanger
(E) Mixing of Two Fluids
Q. 4 A) Write down the Vander Waals equation of state. How does it differ from the ideal gas equation of state?

OR

A) State application of statistics to gases-mono-atomic ideal gas.
B) Explain the principle of operation of a hydrogen-oxygen fuel cell. What is the maximum work
obtainable in the cell?

