Seat No: _____

Enrollment No: ____

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY M.Tech. Winter 2017 - 18 Examination

M.Tech. Winter 2017 - 18 Examination			
Semester: 1 Subject Code: 03210101 Subject Name: Computation Method for Thermal Engineering		Date: 26/12/2017 Time: 2:00 pm to 4:30 pm Total Marks: 60	
2. Make s	ons: stions are compulsory. uitable assumptions wherever necessary. w question on new page.		
-	hat do you understand by Convergence, Consistency, and Stability of num	erical methods,	(05)
	ss in detail. erive $\left(\frac{d^2u}{dx^2}\right)_{i,j} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\Delta x^2}$ by using Taylor series.		(05)
C) G	iven: $\frac{dy}{dx} = \frac{y-x}{y+x}$ with y=1 for x=0. Find y approximately for x=0.1 by Euler	s method.	(05)
Q.2 Answ A)	ver the following questions. (Attempt any three) (Each of five marks) What are the four basic rules the FVM discretisation equation should obey t ealism and overall balance.		(15)
t	Description of given PDE $\frac{\partial u}{\partial t} - \alpha \frac{\partial u}{\partial x}$ runcation error also. Write down the MATLAB programme for the following:	$=\frac{\partial^2 y}{\partial x^2}$ write the	
II.	$y = \cosh^2 x - \sinh^2 x$ V. $x = t \sin(t)$		
IV.	$y = \frac{t-1}{t+1}$ III. $z = \frac{\sin(t^2)}{t^2}$		
	Vrite the steps involved in the mathematical modeling of Thermal System w	ith the help of	
Q.3 A) F signi	ble example. nd the root of equation $\tan x + \tanh x = 0$ which lies in the interval 1.6, 3 ficant digit. Use method of False position.	3.0 correct to four	(07)
	olve the boundary value problem. Use the shooting method.		(08)
<i>y</i> "(<i>x</i>	y = y(x); subject to boundary condition $y(0) = 0$, $y(1) = 1.1752$		
OR			
B) Se	blve the heat conduction equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial t^2}$ $0 \le x \le 1, t \ge 0$ subject to u	= 0 at $x = 0$ for all t	(08)
	$\frac{\partial u}{\partial t} = 0$ at $x = 1$ and $u(x, 0) = \sin \frac{3\pi x}{2}$ Using the explicit Method, choosing	ng $\Delta x = 0.1$ and	
$\Delta t =$	0.0025 so that $r = \frac{1}{4}$, obtain the solution for one time level.		
cond	erive the discretisation equation by control volume formulation of one-dim- uction governed by $\frac{d}{dx}\left(k\frac{dT}{dx}\right) + S = 0$ where k is the thermal conductivity, he rate of heat generation per unit volume.		(07)

OR

A) Solve the boundary value problem. Use the second order FDM method. (07)

$$u'' = ux$$
 subject to boundary condition $u(0) + u'(0) = 1$, $u(1) = 1$ with $h = 1/3$.

B)
$$A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$$
 Find the eigenvalues and corresponding eigenvectors of given matrix. (08)