Seat No: ____

Enrollment No: ____

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY M.Tech., Winter 2017 - 18 Examination

Semester: 1 Date: 30/12/2017 Subject Code: 03209104 Time: 02:00PM to 04:30P Subject Name: Theory of Elasticity Total Marks: 60 Instructions: 1. All questions are compulsory. 2. Figures to the right indicate full marks. 3. Make suitable assumptions wherever necessary. 4. Start new question on new page. Start new question on new page.		0PM	
Q.1	A) Mention the significance of theory of elasticity. What are the applications of theory of elasticity?		(05)
	B) Write a short note on macroscopic behavior of material.		(05)
	C) What is Cauchy's stress principle? Explain with mathematical expression.		(05)
Q.2	Answer the following questions. (Attempt any three)		(15)
	A) Write a comprehensive note on stress concentration		
	B) The following are the principal stress at a point in a stressed material. Taking $E=210 \text{ kN/mm}^2$ and		
	= 0.3, calculate the volumetric strain and the Lame's constants.		
	$\sigma_x=200 \text{ N/mm}^2$, $\sigma_y=150 \text{ N/mm}^2$, $\sigma_z=120 \text{ N/mm}^2$		
	C) Derive boundary conditions for 3D elasticity.		
	D) Explain complementary shear stresses.		
Q.3	A) Write a short note on following. (Mention the statement and Equation)		(07)
	(i) Tresca's criteria		
	(ii) Von Mise's criteria.		
	B) Under what conditions are the following expressions for the components o	f strain at a point	(08)
	compatible?		
	$\boldsymbol{\varepsilon}_{x} = 2axy^{2} + by^{2} + 2cxy$		
	$\boldsymbol{\varepsilon}_{v} = ax^{2} + bx$		
	$\mathbf{y}_{xy} = \boldsymbol{\alpha} x^2 y + \boldsymbol{\beta} x y + a x^2 + \boldsymbol{\eta} y$		
	OR		
	B) Determine normal and shear strains and test if they satisfy necessary condi	tions of compatibility	(08)
	for the displacement field given below		
	$u = 5x^2y + 8xy^2 + x + y + z^3$		
	$v = 11y^3 + 8x^2y + y^2z$		
	$w = 3x^2 + 2xy + z^2$		
Q.4	A) Derive generalized Hooke's law for a 3 D body. State the assumptions mad OR	de in this derivation.	(07)
	A) Derive Airy's stress function. What is the use of defining such function in	practice?	(07)
	B) Derive equilibrium equation for 2-d differential element.		(08)