PARUL UNIVERSITY
FACULTY OF ENGINEERING \& TECHNOLOGY
M.Tech., Winter 2017-18 Examination

Semester: 1

Subject Code: 03209102
Subject Name: Advanced Design of Concrete Structures

Date: 28/12/2017
Time: 2:00 pm to 4:30 pm
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
5. Use of IS 456-2000, SP-16,IS 875 is allowed.
Q. 1 Compute the short term deflection of the beam at mid span under the service loads for simply supported beam of 5 m having self weight of $15 \mathrm{kN} / \mathrm{m}$ and central point load of 20 kN . The beam section is 250 mm X 600 mm and also reinforced with 3 no 16 mm diameter bars at bottom. The material are M_{20} grade concrete and HYSD reinforcement of grade Fe_{415}. Assume suitable data.
Q. 2 Answer the following questions. (Attempt any three) (Each five mark)
A) Differentiate between limit state method and working stress method.
B) What is a flat slab? Write structural advantages of it.
C) Write the limitations of Direct design method.
D) Define limit state and explain different types of limit states.
Q. 3 A) Design corner panel P_{7} by DDM flat plate supported on columns 500 mm square, for a Live Load = $3 \mathrm{kN} / \mathrm{m}^{2}$, Floor Finish $=1.5 \mathrm{kN} / \mathrm{m}^{2}$ use M_{20} and Fe_{415}. Assume clear cover $=20 \mathrm{~mm}$. Effective Column Height $=3.3 \mathrm{~m}$. Bay spacing in X and Y direction $=5 \mathrm{~m} \mathrm{c} / \mathrm{c}$

B) A simply supported T beam of span 5 m subjected to moment of 95 kNm at mid span. The section of beam is shown in figure. Calculate the crack width at corner A and center of tension face C as shown in figure. Use M_{20} grade concrete and HYSD reinforcement grade of Fe_{415}.

OR
B) Central portion of a marriage hall of 12 m diameter is to be covered with a spherical dome with a 2 m diameter opening at crown to provide skylight. Load from skylight shall be assumed as point load acting at crown. Assume this point load to be $[15(\mathrm{DL})+3.5(\mathrm{LL})] \mathrm{kN}$. Fix the geometry of the dome. Assume suitable data.
Q. 4 A) Design a pile cap to support a column service load of 1100 kN . Size of the column is $450 \mathrm{~mm} \times 450$ mm . The cap is supported on four 300 mm diameter poles spaced at 900 mm centres. The cap projects 150 mm beyond the pile face. The materials are M_{25} grade concrete and HYSD reinforcement of Fe_{415}.

OR

A) Design an interior panel of flat slab having equal panels of 6.5 m X 6.5 m . The building is braced with shear walls. The panels have drops 3 m X 3 m size. The depth of drop is 250 mm and that of slab is 200 mm . The internal columns are 500 mm dia and column head is 1000 mm in dia.The storey height above and below the slab is 4 m . The loading is as follows:
D.L= self weight $+2.7 \mathrm{kN} / \mathrm{m}^{2}$
L.L= $4 \mathrm{kN} / \mathrm{m}^{2}$

Use M_{20} concrete and Fe_{415}.
B) A Square Grid floor 20m wide x 30 m long is to be designed for a live load of $3 \mathrm{kN} / \mathrm{m}^{2}$ and floor finish of $1 \mathrm{kN} / \mathrm{m}^{2}$. Spacing of ribs in both the directions is $2 \mathrm{~m} \mathrm{c} / \mathrm{c}$. Analyze the floor. Determine the maximum Deflection at centre. The materials are M_{25} grade concrete and Fe_{415} Steel.

