FACULTY OF ENGINEERING \& TECHNOLOGY

M.Tech. Winter 2017-18 Examination

Semester: 1

Date: 26/12/2017
Subject Code: 03208101
Subject Name: Theory of Machining Science

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 A) Differentiate between orthogonal and oblique cutting. Discuss with neat sketch mechanism of chip formation.
B) Define machinability? On basis of which factors you can compare machinability of two different materials on a similar condition
C) Give the tool signature of single point tool as per ASA system and also explain single point cutting tool geometry with significance of each angle.
Q. 2 Answer the following questions. (Attempt any three) (Each five mark)
A) Show the regions of heat generation with neat sketch and explain causes behind the heat generation.
B) Explain the marking system of conventional grinding wheel.
C) Draw neat sketch of chip formation in metal cutting and derive following relation for the shear angle (Ø) and tool rake angle.

$$
\tan \emptyset=\frac{r \cos \alpha}{(1-r \sin \alpha)}
$$

D) Derive the equation to find out temperature of chip.
Q. 3 A) List out limitations of merchant circle diagram. Draw neat sketch of merchant's circle diagram and derive the following relation for tangential cutting force (Ft) and shear force (Fs).

$$
F t=F s\left[\frac{\cos (\beta-\alpha)}{\cos (\emptyset+\beta-\alpha)}\right]
$$

Where,

$$
\begin{aligned}
& \emptyset=\text { shear plane angle } \\
& \beta=\text { angle of friction } \\
& \alpha=\text { tool rake angle. }
\end{aligned}
$$

B) Define tool life \& derive equation for economics of machining based on maximization of production rate.

OR

B) The following data for Orthogonal Machining operation is as follows:

Rake angle

$$
\begin{aligned}
& =15 \text { degree } \\
& =0.383 \\
& =0.5 \mathrm{~mm} \\
& =3 \mathrm{~mm} \\
& =280 \mathrm{~N} / \mathrm{mm} 2 \\
& =0.7
\end{aligned}
$$

Yield Stress of Shear
Chip thickness ratio
Uncut chip thickness

Friction on the tool face

Time: 2:00 pm to 4:30 pm
Total Marks: 60

Determine the normal and tangential on the tool face.
Q. 4 A) Draw a neat sketch of ECM \& derive expression for material removal rate.

OR

A) What is the general principle to measure cutting forces? Explain the measurement of cutting
forces by Piezoelectric transducer.
B) Why non-traditional machining process needed in today's era? Explain principle of AJM.

