\qquad
\qquad

PARUL UNIVERSITY

FACULTY OF ENGINEERING \& TECHNOLOGY
M.Tech. Winter 2017-18 Examination

Semester: 1

Date: 26/12/2017
Time: 2:00 pm to 4:30 pm
Total Marks: 60

Subject Code: 03206101
Subject Name: Computation Method for Automobile Engineering

Instructions:

1. All questions are compulsory.
2. Make suitable assumptions wherever necessary.
3. Start new question on new page.
Q. 1 A) What do you understand by Convergence, Consistency, and Stability of numerical methods, discuss in detail.
B) Derive $\left(\frac{d^{2} u}{d x^{2}}\right)_{i, j}=\frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{\Delta x^{2}}$ by using Taylor series.
C) Given: $\frac{d y}{d x}=\frac{y-x}{y+x}$ with $\mathrm{y}=1$ for $\mathrm{x}=0$. Find y approximately for $\mathrm{x}=0.1$ by Eulers method.
Q. 2 Answer the following questions. (Attempt any three) (Each five mark)
A) What are the four basic rules the FVM discretisation equation should obey to ensure the physical realism and overall balance.
B) Obtain the equivalent finite difference formulation of given PDE $\frac{\partial u}{\partial t}-\alpha \frac{\partial u}{\partial x}=\frac{\partial^{2} y}{\partial x^{2}}$ write the truncation error also.
C) Write down the MATLAB programme for the following:
II. $y=\cosh ^{2} x-\sinh ^{2} x$
V. $x=t \sin (t)$
IV. $y=\frac{t-1}{t+1}$
III. $z=\frac{\sin \left(t^{2}\right)}{t^{2}}$
D) Write the steps involved in the mathematical modeling of Expansion process of SI engine.
Q. 3 A) Find the root of equation $\tan x+\tanh x=0$ which lies in the interval 1.6, 3.0 correct to four
significant digit. Use method of False position.
B) Solve the boundary value problem. Use the shooting method.
$y^{\prime \prime}(x)=y(x) ;$ subject to boundary condition $y(0)=0, y(1)=1.1752$

OR

B) Solve the heat conduction equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial t^{2}} \quad 0 \leq x \leq 1, t \geq 0$ subject to $u=0$ at $x=0$ for all t
and $\frac{\partial u}{\partial t}=0$ at $x=1$ and $u(x, 0)=\sin \frac{3 \pi x}{2}$ Using the explicit Method, choosing $\Delta x=0.1$ and $\Delta t=0.0025$ so that $r=1 / 4$, obtain the solution for one time level.
Q. 4 A) Derive the discretisation equation by control volume formulation of one-dimensional heat conduction governed by $\frac{d}{d x}\left(k \frac{d T}{d x}\right)+S=0$ where k is the thermal conductivity, T is the temperature, S is the rate of heat generation per unit volume.

OR

A) Solve the boundary value problem. Use the second order FDM method.
$u "=u x \quad$ subject to boundary condition $\quad u(0)+u^{\prime}(0)=1, u(1)=1$ with $h=1 / 3$.
В) $A=\left[\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]$ Find the eigenvalues and corresponding eigenvectors of given matrix.

