Seat No: _____

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY M.Tech.Winter2018 – 19 Examination

Semester: 1 Subject Code: 03209104 Subject Name: Theory of Elasticity

Date: 12/12/2018 Time: 10:30 am to 01:00 pm Total Marks: 60

(05)

(15)

Enrollment No:

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1	A) Mention the significance and applications of theory of elasticity?	(05)
-----	---	------

- **B**) Write a comprehensive note on stress concentration.
- C) What is Cauchy's stress principle? Explain with mathematical expression. (05)
- Q.2 Answer the following questions. (Attempt any three) (Each five mark)
 - A)Write a short note on macroscopic behaviour of material
 - B) State and justify the basic assumptions in theory of elasticity.
 - C) The following are the principal stress at a point in a stressed material. Taking E=210kN/mm² and

v=0.3, calculate the volumetric strain and the Lame's constants.

- $\sigma_x = 200 \text{N/mm}^2$, $\sigma_y = 150 \text{N/mm}^2$, $\sigma_z = 120 \text{N/mm}^2$
- **D**) Write a short note on following. (Mention the statement and Equation)
 - i. Tresca's critera
 - ii. Von Mises criteria.
- A) Is the following state of strain possible?

Q.3
$$\begin{aligned} e_x &= A(x^2 + y^2) & \gamma_{xy} &= 2Axy \\ e_z &= \gamma_{xz} &= \gamma_{yz} &= 0 & e_y &= Ay^2 \end{aligned}$$
(07)

B) The stress components at a point in a body are given by $\sigma_x=3xy^2+2x$, $\sigma_y=5xyz+3y$, $\sigma_z=x^2y+y^2z$, $\tau_{xy}=0$, $\tau_{yz}=\tau_{xz}=3xy^2+2xy$ Determine whether these components of stress satisfy the equilibrium equations or not as the point (08)

(1,-1, 2). If not then find body force at this point so that the stress components are under equilibrium.

OR

- **B**) The state of strain at a point is given by: $\xi x=0.001$, $\xi y=-0.003$, $\xi z=\gamma_{xy}=0$, $\gamma_{xz}=-0.004$, $\gamma_{yz}=0.001$ Determine the stress tensor at this point. Take $E = 210 \times 10^6 \text{kN} / \text{m}^2$, Poisson's ratio = 0.28. Also (08) find Lame's constant.
- Q.4 A) Derive the relationship between plane stress and plane strain for plane stress case. (07) OR

A) Derive the strain-strain relationship equation (Generalized Hooke's law) for linearly isotropic material. (07)

B) Derive expression for two dimensional stress at a point. Also, Derive expression for principle stress and principle plane for two dimensional stresses. (08)