Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 A) What is shape function? Explain its physical significance.
B) Determine stiffness matrix for two springs in series.
C) Differentiate between FEM \& conventional analytical method.
Q. 2 Answer the following questions. (Attempt any three) (Each five mark)
A) Discuss formulation of the finite element method for heat conduction.
B) A system of spring as shows in fig. Determine the global stiffness matrix \& deflection the each spring.

C) Explain finite element method for plasticity.
D) Explain discretization of an element, node \& degree of freedom.
Q. 3 A) For the two bar truss shown in fig. determine the displacement in the y - direction of nodal
\&the axial force in each element. A force of $\mathrm{P}=1000 \mathrm{KN}$ is applied at node in positive $\mathrm{Y}=$ direction while node settles amount $\sigma=50 \mathrm{~mm}$ in negative $\mathrm{x}=$ Direction. Let $\mathrm{E}=210 \mathrm{Gpa} \& \mathrm{~A}=6^{*} 10^{-4} \mathrm{~mm}$ for each element.

B) For the smooth pipe of variable cross section, shown in fig. determine the potential at the junction, the velocity in each section of pipe \& volumetric flow rate. The potential at the left end \& is $\mathrm{p}_{1}=10 \mathrm{~m}^{2} / \mathrm{s}$ \& that at the right end is $\mathrm{p}_{4}=1 \mathrm{~m}^{2} / \mathrm{s}$.

OR

B) A local member with loading is initially done $20^{\circ} \mathrm{C}$ the temp. That rises to $60^{\circ} \mathrm{C}$. Determine the nodal displacement \& elemental stresses developed. Assume that

Element	Modulus of elasticity	Coefficient of thermal efficiency
1	72 Gpa	$2.3^{*} 10^{-6} /^{\circ} \mathrm{c}$
2	210 Gpa	$12 * 10^{-6 / 0} \mathrm{c}$

Q. 4 A) For the plane truss shown in fig. Determine the displacement \& reaction. Let $\mathrm{E}=210 \mathrm{Gpa}, \mathrm{A}=$ $6^{*} 10^{-4} \mathrm{~m}^{2}$ for element (1) \& (2), \& $\mathrm{A}=6 \sqrt{2} * 10^{-4} \mathrm{~m}^{2}$ for element (3).

OR

A) For a thin plate $4 * 3 \mathrm{~m}$ subjected to the surface traction. Determine the nodal displacement \& the element stress. The plate thickness $\mathrm{t}=1 \mathrm{~mm}$ in; $\mathrm{E}=30^{*} 10^{-6} \mathrm{Mpa} \& \mathrm{~V}=0.30$.
B) In a triangular element, the nodes $1,2 \& 3$ and co-ordinates $(30,40),(140,70) \&(80,140)$
respectively. The displacement in mm , at nodes $1,2 \& 3 ;(0.1,0.5),(0.6,0.5) \&(0.4,0.3)$
respectively. The points p within the element has co-ordinate $(77,96)$ for point p determine.
i. The natural coordinate.
ii. The displacement.
iii. The shape function.

