PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY M.Tech. Winter 2018 - 19 Examination

Semester Subject	r: 1 Date: 11/12/2018 Code: 203215102 Time: 10:30am to 1:0	Date: 11/12/2018 Time: 10:30am to 1:00pm	
Subject Name: Advanced Soil MechanicsTotal Marks: 60			
Instruction 1. All que 2. Figure 3. Make 4. Start n	ions: estions are compulsory. es to the right indicate full marks. suitable assumptions wherever necessary. new question on new page.		
Q.1(A)	Explain stress path for different types of triaxial test including Unconfined Compression Test	(10)	
Q.1(B)	Explain Critical Void Ratio	(05)	
Q.2 (A) (B) (C) (D)	Answer the following questions. (Attempt any three) (Each five mark) An undisturbed sample of clay, 24 mm thick, consolidated 50% in 20 minutes, when tested in laboratory with drainage allowed at top and bottom. The clay layer, from which sample was obtained is 4 m thick in field. How much time will it take to consolidate 50%, with double drainage? If the clay stratum has only single drainage, calculate the time to consolidate 50%. Assume uniform distribution of consolidation pressure. What are the uses of models in Engineering The test was conducted on soil sample and following results were obtained Cell Pressure (KN/m2) : 100, 200, 300 Deviator Stress (KN/m2) : 65, 132, 200 Determine shear strength parameters w.r.t total stress State types of Triaxial tests and explain in brief.	(15)	
Q.3 (A)	The stress at failure on failure plane in cohesionless soil mass are : Normal Stress = 10 KN/m & shear stress = 4kN/m . Determine resultant stress on failure plane, angle of internal friction Angle of Inclination of failure plane to the major principal plane. Also determine it graphical	n2 n, (07) ly.	
Q.3 (B)	Explain Spring Analogy of Consolidation in detail	(08)	
Q.3(B)	A direct shear box test is performed for sandy soil in an undrained condition and normal stress was kept at 250 kN/m2. The angle of shearing resistance was observed to be 32°. Calculate (1) Undrained shear strength (ii) Plot a Mohr Circle determine magnitude of principal stress and their orientations.	(08)	
Q.4 (A)	Explain procedure of triaxial test with neat sketch OR	(07)	
Q.4 (A)	Explain Critical State Concept in brief	(07)	
Q.4 (B)	Explain Mohr Columb Strength theory in detail	(08)	