Seat No: ____

Enrollment No: _____ PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY M.Tech, Winter 2018 - 19 Examination

Semester:1 Subject Code: 203209135 Subject Name: Structural Optimization

Date: 13/12/2018 Time: 10:30 AM to 1:00 PM Total Marks: 60

Instrue 1. All c 2. Figu 3. Mak 4. Start	e tions: questions are compulsory. res to the right indicate full marks. e suitable assumptions wherever necessary. t new question on new page.	
Q.1	A) Write a short note on Engineering Optimization.	(05)
	B) What are the various methods of Optimization Techniques?	(05)
	C) Enlist various Engineering applications of Optimization.	(05)
Q.2	Answer the following questions. (Attempt any three) (Each five mark)	(15)
	A) What do you understand by Statement of an Optimization Problem? Also describe the following: Design Vector, Design Constraints & Objective Function.	
	B) Give a brief description of Univariate Optimization.	
	C) Explain the concept of Dynamic Programming.D) Mention the significance of simplex method. Write steps to be followed in simplex method.	
Q.3	A) Use graphical method to solve the following LPP:	(07)
	Maximize $Z=3x_1+9x_2$	
	Subject to $x_1+4x_2 \le 8$	
	$x_1+4x_2 \leq 4$ and $x_1, x_2 \geq 0$	
	B) Explain Quasi Newton Algorithm.	(08)
	OR	
	B) Explain Conjugate Gradient with an Algorithm.	(08)
Q.4	A) Solve the LPP by simplex method:	(07)
	Maximize $Z=4x_1+3x_2$	
	Subject to $2x_1+x_2 \le 1000$	
	$x_1 + x_2 \le 800$	
	$x_1 \le 400$	
	$x_2 \le 700 \text{ and } x_1, x_2 \ge 0.$	
	OR	
	A) A ship is to be loaded with stock of 3 items. Each unit of item 'n' has a weight of w_n	(07)
	(per unit) and can provide return (in thousand rupees) 'rn'. The maximum cargo	

weight the ship can take is 4 tons and the details of the three items are as follows:

Item(n)	Weight(w _n)	Return (r _n)
1	2	31
2	3	47
3	4	44

B) What is Linear Programming? Describe Mathematical Model of LPP.

(08)