PARUL UNIVERSITY

FACULTY OF ENGINEERING \& TECHNOLOGY
M.Tech. Structural Engineering Winter 2018 Examination

Semester: 1

Date: 10/12/2018
Subject Code: 203209101
Subject Name: Advanced Structural Analysis

Time: 10:30am to 1:00pm
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 A) Fill in the blanks:
5. In stiffness member approach method R_{T} known as \qquad .
6. Transpose of the matrix $\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]$ is \qquad
7. The product of flexibility and stiffness is \qquad .
8. The beam member has \qquad degrees of freedom.
9. Stiffness Matrix methods approaches are \qquad and \qquad .
B) Objective Type of Question
10. Definition of stiffness.
11. Explain actions and displacement.
12. Write formula SM matrix for one Member in Plane Frame.
13. Find out K.I. for given structure.

14. Advantages of stiffness matrix method.
C) Write the steps to find Sj matrix of Plane Truss.
Q. 2 Answer the following questions. (Attempt any three) (Each five mark)
A) Prove that any $[\mathrm{R}]$ direction cosine for rotation matrix is $[\mathrm{R}]^{-1}=[\mathrm{R}]^{\mathrm{T}}$
B) Explain the term 'Shape Functions'. Why polynomial terms are preferred for shape functions in finite element method?
C) Explain the one, two and three dimensional polynomial shape functions.
D) Write short note on Galerkin's method.
Q. 3 A) Calculate S_{J} Matrix and load vector for a beam as shown in figure using stiffness member approach. Considering the following secondary effects
(1) Support A rotates by 0.001 radian clockwise.
(2) Support B settle downward by 5 mm .
(3) Member BC is subjected to temperature changes of $30^{\circ} \mathrm{C}$ at top and $40^{\circ} \mathrm{C}$ at bottom

EI $=20^{*} 10^{3} \mathrm{kN} . \mathrm{m}^{2}$,
$\mathrm{AE}=10^{*} 10^{3} \mathrm{KN}$,
$\alpha=12 * 10^{-6} /^{0} \mathrm{C}$ take $\mathrm{d}=230 \mathrm{~mm}$

B) Find out Deformation matrix, support reactions and draw SF diagram.(same figure)
B) Find out Deformation matrix, end member actions and draw BM diagram.(same figure)
Q. 4 A) Calculate S_{J} Matrix as shown in rigid frame figure using stiffness member approach.

Take, $\mathrm{E}=2 * 10^{8} \mathrm{kN} / \mathrm{m}^{2}, \mathrm{~A}=0.04 \mathrm{~m}^{2}, \mathrm{I}_{\mathrm{z}}=2 * 10^{-3} \mathrm{~m}^{4}$.

OR
A) Calculate S_{J} Matrix as shown in grid frame in figure by stiffness member approach.
$\mathrm{EI}=90^{*} 10^{3} \mathrm{kN} . \mathrm{m}^{2}, \mathrm{GJ}=40829 \mathrm{kNm}{ }^{2}$
APProach Take $\begin{aligned} E I & =90 \times 10^{3} \mathrm{kN} \mathrm{m} \\ G I & =40829 \mathrm{kN} \cdot \mathrm{m}^{2}\end{aligned}$

B) Obtain joint stifnees matrix of the Truss

