Seat No: _____

Enrollment No: _____

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY M.Tech. Winter 2019 - 20 Examination

WI. LECH. WINTER 2019 - 20 Examination		
Semester: 2	Date: 19/12/2019	
Subject Code: 03209155	Time: 2:00 pm to 4:3	30 pm
Subject Name: Theory of Plates & Shells	Total Marks: 60	-
Instructions:		
1. All questions are compulsory.		
2. Figures to the right indicate full marks.		
3. Make suitable assumptions wherever necessary.		
4. Start new question on new page.		
i built new question on new puge.		
Q.1 A) Enlist the Kirchhoff-Love Assumptions for shells.		(05)
B) Explain the difference between thin plate and thick plate.		(05)
C) Explain in brief the load carrying mechanism of shells.		(05)
Q.2 Answer the following questions. (Attempt any three) (Each five mark)		(15)
A) Write down the Equations of Codazzi and Gauss. Mention their Significa	ince.	(10)
B) Explain different boundary conditions exist in plate theory with neat sket		
equations.		
C) Differentiate between beam and plate.		
D) State the fundamental assumptions of the linear, elastic, small-deflection	theory of bending for	
thin plates given by Kirchhoff.		
Q.3 A) Write a note on Membrane Theory of Shells. Write down the fundamenta	al equations of the	
membrane theory for thin shells.	1	(07)
B) Give the classification of shell based on geometric form and shell curvatu	re with neat sketches.	(08)
OR		()
B) Enlist all the stress resultants generated in a shell element with proper no	tation and meaning.	(08)
Q.4 A) Derive expressions for deflection in simply supported rectangular plate s		. ,
distributed load using Navier's method.	5	(07)
Ŭ OR		
A) Derive the basic fourth order partial differential equation for a plate (Car	tesian Coordinates). Also	
write down the equation for shear and corner forces.	,	(07)
B) Obtain the equation of deflection for a thin circular plate subjected to cor	centrated load "P" at the	
centre. The plate is fixed all around the edges. Also find the maximum defle		(08)
$t = 50 \text{ mm} \mu = 0.3 \text{ E} = 200 \text{ GPa and } P = 50 \text{ kN}.$	r,	()