Seat No: _____

Enrollment No: _____ PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY M.Tech.Winter 2019 - 20 Examination

Semester: 1 Subject Code: 203208101 Subject Name: Theory of Machining Science		Date: 16/12/2019 Time: 10.30 am to 1.00 pm Total Marks: 60	
Instructions: 1. All questions are compulsory. 2. Figures to the right indicate full marks. 3. Make suitable assumptions wherever necessary. 4. Start new question on new page			
4.5	art new question on new page.		
Q.1	A) Explain conversion from ASA to ORS. What are the assumptions made by various forces in metal cutting?	by merchant for getting	(05)
	B) Show the regions of heat generation with neat sketch and explain car generation.	auses behind the heat	(05)
	C) Define tool life. The tool life equation for a given operation is VT $^{0.5}$ =7.W in tool life if speed is cut down to 50%?	Vhat will be the change	(05)
Q.2	Answer the following questions. (Attempt any three) (Each five mark) A) Define machinability? State factors affecting machinability.		(15)
	 B) Draw neat sketch of chip formation in metal cutting and derive the relation nose radius (r), and rack angle (∝). 	for the shear angle (\emptyset) ,	
	C) List the types of chips produced during machining and discuss the factors at D)Explain design requirement for tool-force dynamometers and discuss measu force by Piezoelectric transducer	ffecting on it. rement of cutting	
0.3	A) Derive equation of optimum cost based on minimum production cost		(07)
	B) Explain experimental method of determining average chip tool interface ters sharpening action in grinding?	mperature. What is self	(08)
	OR		
	B) During an orthogonal machining (turning) operation of C-25 steel with 10-1	10-6-6-8-90-1mm	
	(ORS) shaped triple carbide tool, the following observation have been made (1) upout this thickness = 0.127 mm (2) width of out = 0.2 mm/ray (2) Set	naad - 2 m/s	
	(1) uncut chip theorem (5) (27) min (2) with of cut = 0.2 min/rev (3) S (4) rack angle = 10 degree (5) cutting force = 567N (6) thrust force = 227N	V = 2 m/s	
	(1) Taket angle $r = 10$ degree (b) catalog role $r = 0.0713$ (b) must role $r = 2271$ (7) Chip thickness = 0.288 mm		
	Calculate:		(08)
	(1) shear angle		
	(2) shear stress along the shear plane		
	(3) cutting power		
	(4) kinetic co-efficient of friction		
0.4	A) List various modes of tool wear and explain any two of them.		(07)
	OR		
	A) Differentiate:		
	1) Conventional and non-conventional machining		(07)
	2) Orthogonal and Oblique Machining		(0.0)
	b) Discuss the effect of parameters on MIRK in Electro Discharge Machining p	process.	(08)