Enrollment No:_____

PARUL UNIVERSITY FACULTY OF COMMERCE

M.Com. (Hons), Summer 2017 – 18 Examination

	M.Com. (Hons), Summer 24 r: 3 Code: 16201205 Name: Quantitative Techniques for Financial Dec	Date: 05/06/2018 Time: 10:30 am to 1:0)0 pm
2. Figure 3. Make	ions: lestions are compulsory. es to the right indicate full marks. suitable assumptions wherever necessary. new question on new page.		
Q.1.A)	Choose the correct answer		(06
1.	$\frac{d}{dx}\left(\frac{1}{x^2}\right) = \underline{\qquad}$		
		\mathbf{b} \mathbf{z}	
	a) $\frac{1}{2x}$	b) $-\frac{2}{x^3}$	
	c) log <i>x</i>	d) 0	
2.			
	a) Geometric Mean	b) Median	
2	c) Arithmetic Mean	d) Mode	
3.	· · · · · · · · · · · · · · · · · · ·		•
	a) perfect correlation	b) no correlation	
	c) defective correlation	d) reciprocal correlation	
4.	If $b_{yx} = 0.5 \& b_{xy} = 2$ then the correlation coefficient		
	a) 0.1	b) 1	
	c) 10	d) 0.25	
5.	1 1 1		
	a) $p(A) + p(B) - p(A)p(B)$	b) $p(A) + p(B)$	
(c) $p(A)p(B)$	d) 0	
6.	I I		
	a) two solution	b) unique solution	
B)	c) no solutions	d) infinite solutions	(0
	Answer the following. If $z = e^x + 2xy - \cos y$ then $\frac{\partial z}{\partial x} = ?$		(00
	Find $\int \left(\frac{1}{x} + 2e^x\right) dx$		
	Write the equation of line of regression of x on y .		
	If $b_{xy} = 0.3$, $\bar{x} = 100$, $\bar{y} = 15$ then for $y = 25$; x	=?	
	$p(A) = 0.6 = p(B)$ and $p(A \cap B) = 0.3$ then find		
	$2 \log(a) = \log a^2$ [True / False]	r (m 2).	
	Answer the following.		(12
	Discuss any one of the methods to create a decision	tree.	(1
	(i) Solve the following system using addition: $3x -$ (ii) Solve graphically: $x + y = 4$; $2x + y = 6$		
3.		(iii) two H, (iv) at least one H.	

Q.3 Answer the following. (Any Three)

1. Find S.D. for the distribution giving 300 cars according to their selling days.

		•	•		Ū		•	
x	0	1	2	3	4	5	6	7
f	1	2	3	4	7	4	4	4

2. In a normal distribution mean $\mu = 21.5$ and s.d. $\sigma = 2.5$. Find the following:

(i) $P(18 \le X)$ (ii) $P(X \le 25)$ (iii) $P(X \ge 25)$ (iv) $P(18 \le X \le 25)$

3. Find the Pearson's Correlation Coefficient of the following data:

_	y (i) ar	$= e^{3x}$	99	,,	97 ii) y =			90	91
	л V	100							

4. Differentiate : (i) $y = e^{3x} \cos 2x$

Q.4 Answer the following. (Any two)

1 A. Find the equation of regression line of y on x from the following data and estimate y for x = 1. (05)

ſ	x	0	2	4	5	7
	у	5	3	2	1	0
. 7		2.44				

B. Integrate $y = 2x \sin 3x + e^{3x}$

2. A. If $p(A) = \frac{1}{3}$, $p(B') = \frac{1}{4}$, $P(A \cap B) = \frac{1}{6}$ then find the following:

(i)
$$p(B)$$
 (ii) $p(A \cup B)$ (iii) $p(A' \cup B')$ (iv) $p(A' \cap B')$ (v) $p(A'|B)$

B. On an average 1.5 percent of electric bulbs are found to be defective in a bulb manufacturing (04) factory. Using Poisson distribution find the probability of 4 defective bulbs in a box of 200 bulbs.

')

3. Find the mean, median and mode of the following data:

 Class
 10-19
 20-29
 30-39
 40-49
 50-59

 f_i 2
 9
 15
 14
 10

(09)

(04)

(05)

Normal Distribution table:

					-		μ-ν	1.75		
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.7	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.8	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.9	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000