\qquad
PARUL UNIVERSITY
FACULTY OF COMMERCE
B.Com (Hons), Winter 2017-18 Examination

Date: 11/12/2017
Time: 10:30am to 1:00pm
Total Marks: 60

Subject Name: Business Statistics-II

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.

Q. 1 (A) Do as directed.

1. Testing Ho: $\mu=25$ against $\mathrm{H}_{1}: \mu \neq 20$ leads to:
(a) Two-tailed test
(b) Left-tailed test
(c) Right-tailed test
(d) Neither (a), (b) and (c)
2. If both variables X and Y increase or decrease simultaneously, then the coefficient of correlation will be:
(a) Positive
(b) Negative
(c) Zero
(d) One
3. When using the chi-square test for differences in two proportions with a contingency table that has r rows and c columns, the degree of freedom for the test statistics will be.
(a) $(\mathrm{r}-1)(\mathrm{c}-1)$
(b) $(\mathrm{r}-1)+(\mathrm{c}-1)$
(c) $\mathrm{n}-1$
(d) none of these
4. Index numbers can be used for:
(a) Forecasting
(b) Fixed prices
(c) Different prices
(d) Constant prices.
5. A time series consists of:
(a) Short-term variations
(b) Long-term variation
(c) Irregular variations
(d) All of the above
6. If $b_{y x}=-0.2$ and $b_{x y}=0.8$ then the value of r is
(a) .016
(b) -.016
(c) 0.4
(d) -0.4
(B) Do as directed.
7. If coefficient of correlation is more than 6 times of probable error ($r>6$ P.E), it is significant [True/False]
8. Arithmetic mean of regression coefficients is less than or equal to the coefficient of correlation [True/False]
9. Confidence interval for one population variance is \qquad
10. Write the name of the types of Index Number.
11. The Formula of correlation coefficient by Spearman's method is \qquad
12. The value of correlation coefficient lies between 0 to 1 [True/False]

Q. 2 Answer the following.

1. The average daily wage of 1000 labors of a factory A is Rs 47 with s.d Rs 28.The average daily wage of 1500 labors of a factory B is Rs 49 with s.d Rs 40 . Can it be said that the average daily wage of factory B is more than the average daily wage of factory A?
2. The IQ of two groups of children with variations in mental functions are given below

Group-1	2.5	4.5	3.3	4.5										
Group-2	1.5	1.7	1.6	2	2.2	2.3	1.6	2.2	3	2.8	3	2.8	3.5	3.5

Using Wilcoxon rank sum test, assess the significance of difference between the IQs of the two groups of children.
3. Find the coefficient correlation between x and y.

X	5	9	13	17	21
Y	12	20	25	33	35

Q. 3 Attempt Any Three.

1. Find the Laspeyre's ,Paasche's and Fisher's indx numbers of 2004 taking 2000 as base year from the following data:

Commodity	2000		2004	
	price	Quantity	price	Quantity
Wheat	8	30	10	35
Rice	20	8	25	10
Pulses	16	3	24	5
Suger	12	5	15	5
Oil	35	5	45	5

2. In a certain sample of 2000 families, 1400 families are consumers of tea. Out of 1800 Hindu families, 1236 families consume tea. Use χ^{2} test and state whether there is any significant difference between consumption of tea among Hindu and non-Hindu families.
3. On the basis of observation made on 30 cotton plants, the total correlation of yield of cotton (x_{1}), number of bolls i.e seed vessel (x_{2}) and height $\left(\mathrm{x}_{3}\right)$ are found to be:
$r_{12}=0.8, \quad r_{13}=0.65, \quad r_{23}=0.7$
Compute the partial correlation between yield of cotton and the number of bolls, eliminating the effect of height. Also find $R_{1.23}$
4. The proportions of literates in two towns A and B are 30% and 25%. If samples of 1200 and 900 are taken from these population, will the difference between the proportion remain hidden?

Q. 4 Attempt Any Two.

1. Set up two-way ANOVA table for the data given below:

Field	Treatment			
	A	B	C	D
P	45	40	38	37
Q	43	41	45	38
R	39	39	41	41

2. a) What is time series? Explain the component of the time series.
b) Below are given the gain in weights (in lbs) of cows fed on two diets X and Y .

Diet X	25	32	30	32	24	14	32			
Diet Y	24	34	22	30	42	31	40	30	32	35

Test at 5% level whether the two diets differ as regard their effects on mean increase in weight.
3. Fit a second degree parabolic trend to the data given below and obtain trend values.

Year	1950	1955	1960	1965	1970
Profit(thousand)	11	12	14	18	16

