Seat No:

PARUL UNIVERSITY FACULTY OF IT & COMPUTER SCIENCE BCA Winter 2018 – 19 Examination

Semester:3 Date: 02/11/2018 Subject Code: 05191205 Time: 10:30am to 01:00pm Subject Name: Computer Oriented Numerical & Statistical Methods **Total Marks: 60 Instructions:** Write short notes (05)**1.** Define truncation error 2. Define Absolute error **3.** Define Mutually Exclusive events **4.** Prove that $(1 + \Delta)(1 - \nabla) = 1$ 5. The mean and variance of Binomial distribution are ______and _____ respectively. Multiple choice type questions/ Give the sentence true or false. (Each of 01 marks) (10)**1.** Newton's first divided difference $[x_0, x_1] =$ (a) $y_1 - y_0$ (b) $\frac{y_1 - y_0}{x_0 - x_1}$ (c) $\frac{y_1 - y_0}{x_1 - x_0}$ (d) $\frac{y_0 - y_1}{x_0 - x_1}$ **2.** The system of n linear equations in n unknowns is diagonally dominant if _____ (a) $|a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$ (b) $|a_{ii}| < \sum_{j \ne i} |a_{ij}|$ (c) $|a_{ii}| \ge 0$ (d) $\sum_{j \ne i} |a_{ij}| = 0$ **3.** The coefficient of variation (C.V) is (a) $\frac{1}{\overline{x}} * 100$ (b) $\frac{\overline{x}}{t} * 100$ (c) $\frac{1}{\overline{x}}$ (d) none of these 4. Which of the following method is a direct method? (a) Gauss Seidel (b) Gauss Jacobi (c) Gauss Elimination (d) none of these 5. Which of the following is a transcendental equation? (a) $x^3 - 2x^2 + x + 1 = 0$ (b) $\cos x - xe^x = 0$ (c) $x^3 - 2x - 1 = 0$ (d) None of these 6. Rounding off the number 80.758 to one decimal gives 80.76. (\mathbf{T}/\mathbf{F}) 7. The total area under the normal curve is 1. (T/F)8. The expected value E(x - x) = 0, where x = 0 is the mean of the random variable x. (\mathbf{T}/\mathbf{F}) 9. The necessary condition to find interval in which a root of transcendental equation lies is f(a).f(b) < 0. (\mathbf{T}/\mathbf{F}) **10.** The mean and variance of Poisson distribution are ng and pg respectively. (T/F)**1.** If the Median and Mode of 10 observations are respectively 44.4 and 45.5. Find the Mean. (02)2 (02)4. Find the mode of the following data: 30-40 Class 0-10 10-20 20-30 40-50 50-60 (03)9 11 7 f(x)5 13 10 5. Solve the following system of equations by using Gauss Jacobi method up to 2 iterations: (03)5x-2y+3z = -1; -3x+9y+z = 2; 2x-y-7z = 3

6. For a Poisson Variate 3P(x=2) = P(x=4). Find mean and variance.

(03)(15)

Page 1 of 2

Enrollment No:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1 Answer the followings.

A.

B.

Q.2 Answer the following

A and B are two independent events and
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{1}{5}$, find $P(A \cup B)$. (02)

3. Write the normal equations for the exponential function
$$y = ae^{bx}$$

Q.3 Answer the following (Any three)

- **1.** Find the roots of the equation $x^3 4x 9 = 0$ using Bisection method up to 4th iteration.
- **2.** Solve the following system of equations by Gauss Elimination method:

2x-y+3z = 8; -x+2y+z = 4; 3x+y-4z = 0

3. From the following table, find f(3) using Newton's Divided difference formula:

Х	1	2	7	8	
f(x)	1	5	5	4	

4. The probability distribution of a random variable

Random variable, x	0	1	2	3	4
Probability	1/10	р	3/10	р	1/10

- (i) Find the value of p
- (ii) Find E(x+1)

Q.4 Answer the following.

A. Using Newton's Forward interpolation formula, find the value of y for x=0.5 for the following data:

X	0	1	2	3
v	1	2	1	10

- **B.** (i) Determine f(10) by Lagrange Interpolation from the following data:
 - x 5 6 9 11

F(x) 12 13 14 16

(ii) If y is the pull required to lift a load x by means of a pulley block, find a linear law of the form y=mx+ c

у	12	15	21	25	
Х	50	73	100	120	

OK	

B. (i) Solve the following system of equations by using Gauss- Seidel method correct up to 3 decimal places:

12x + 3y - 5z = 1; x + 5y + 3z = 28; 3x + 7y + 13z = 76

- (ii) The probability that a bomb dropped from a plane will hit a target is 2/5. Two bombs are enough to destroy a bridge. If 4 bombs are dropped on a bridge, find the probabilities that (i) The bridge will be destroyed
 - (ii) The bridge will be partially destroyed
 - (iii) The bridge will be saved

(05)

(10)