Seat No:_

Enrollment No:

PARUL UNIVERSITY

FACULTY OF APPLIED SCIENCE

M.Sc., Summer 2017-18 Examination

Semester: 2

Subject Code: 11206154

Subject Name: Advanced Linear Algebra

Date: 14/05/2018

Time: 10:30 AM to 01:00 PM

Total Marks: 60

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1. A) Answer the following Questions.(Any one)

(08)

- (a) Let $T: V \to W$ be a linear transformation. Then prove the following:
- i) If X is a subspace of V, then T(X) is a subspace of W.
 - ii) If Y is a subspace of W, then $T^{-1}(Y)$ is a subspace of V containing Ker(T).
 - iii) Assume X_1, X_2 are subspaces of V both containing Ker(T). If $T(X_1) = T(X_2)$, then $X_1 = X_2$.
- (b) Let V be an n-dimensional vector space and T an operator on V. Then prove that there exists a vector z such that $\mu_T(x) = \mu_{T,z}(x)$.

Q.1. B) Answer the following questions. (Any two

(08)

(a) Let
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 be defined by $T(v) = \begin{pmatrix} 2 & -1 & 1 \\ -3 & 4 & -5 \\ -3 & 3 & -4 \end{pmatrix} v$. Let $v = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$. Determine

minimal polynomial of T with respect to v

- (b) Let V be a vector space with basis $B_v = (v_1, v_2, ..., v_n)$, W be a vector space with basis $B_w = (w_1, w_2, ..., w_m)$, and $T \in L(V, W)$. Let $B_v' = (f_1, f_2, ..., f_n)$ be the basis dual to B_v and $B_w' = (g_1, g_2, \dots, g_m)$ be the basis dual to B_w . Then show that $M_{T'}(B_w', B_v') = M_T(B_v, B_w)^{tr}$.
- (c) Let V be an n-dimensional vector space and T an operator on V. Then Show that there exists a non-zero polynomial f(x) of degree at most n^2 such that $f(T) = 0_{V \to V}$.

Q.2. A) Answer the following questions.(Any two)

(08)

- (a) Assume $T: V \to W$ is a linear transformation. Then show that T is injective if and only if $Ker(T) = \{0_V\}$.
- (b) Let V be a finite-dimensional inner product space and assume that $f \in V'$. Then prove that there exists a unique vector $v \in V$ such that $f(u) = \langle u, v \rangle$ for all $u \in V$.

(c) Let
$$w_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $w_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ be two vectors in \mathbb{R}^4 . Set $W = span(w_1, w_2)$. Then

find orthogonal projection of the vector $v = \begin{pmatrix} 1 \\ 3 \\ -4 \\ \zeta \end{pmatrix}$ onto W.

Q.2. B) Answer of the following questions.(Any one)

(06)

- (a) Let V be an inner product space and $u, v \in V$ be vectors in V. Then show that $||u+v|| \le ||u|| + ||v||$. Moreover, if $u, v \ne 0$, equality holds only if there exists $\lambda > 0$ such that $v = \lambda u$.
- (b) Let f(x) and $d(x) \neq 0$ be polynomials with coefficients in F. Prove that there exists unique polynomials q(x) and r(x), which satisfy f(x) = q(x)d(x) + r(x), where either r(x) = 0 or deg(r(x)) < deg(d(x)).

