PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc. Summer 2017-18 Examination

Enrollment No:

Date: 09/05/2018 Time: 10:30 am to 1:00 pm **Total Marks: 60**

Instructions:

Semester: 2

1. All questions are compulsory.

- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.

Subject Name: Applied Partial Differential Equations

4. Start new question on new page.

Q.1. A) Attempt any one

Subject Code: 11206152

Using the method of separation of variables, solve the following equation: (a)

$$\frac{\partial^2 y}{\partial t^2} - \frac{c^2 \partial^2 u}{\partial x^2} = 0; \ 0 < x < l, t > 0,$$

$$y(x, 0) = f(x); \ 0 \le x \le l,$$

$$\frac{\partial y}{\partial t}(x, 0) = g(x); \ 0 \le x \le l, y(0, t) = y(l, t) = 0; t > 0$$

(b) Solve the BVP $k \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \ 0 < x < L, u(0, t) = 0, u(L, t) = 0, t > 0$

$$u(x, 0) = \begin{cases} 1, 0 < x < \frac{L}{2} \\ 0, \frac{L}{2} < x < L \end{cases}$$

Q.1. B) Answer the following questions. (Any two)

- Reduce the equation $\frac{\partial^2 u}{\partial x^2} x^2 \frac{\partial^2 u}{\partial y^2} = 0$ to a canonical form. **(a)**
- State and prove Superposition principle. **(b)**

If the function R, P and Z contains y but not x. Show that the solution of Rr + Pp + Zz = w can (c) be obtained from a second order ODE with constant coefficients. Hence solve $yr + (y^2 + 1)p +$ $yz = e^x$

Q.2. A) Answer the following questions.

- 1. Classify the PDE yp xq = xyz + x in Linear, Semilinear and Quasilinear. (04)**(a)** 2. Eliminating arbitrary function from the partial differential equation for $z = xy + f(x^2 + y^2)$ (04)
- Solve the equation $(D^2 2DD')z = e^{2x} + x^2y$ **(b)**

Q.2. B) Answer the following questions (Any two)

- Verify the PDE $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = \frac{2z}{x^2}$ is satisfy by $z = \frac{1}{x}Q(y-x) + Q'(y-x)$, where Q is an arbitrary **(a)** function
- Prove that $F(D,D')e^{ax+by} = F(a,b)e^{ax+by}$, where a & b are constants. **(b)**
- Find the particular integral of $(D^2 + 2DD' + D'^2)z = sin(2x + 3y)$ (c)
- **Q.3.** A) Find the solution of Dirichlet problem for the upper half plane which is defined as $u_{xx} + u_{yy} =$ (08) $0; -\infty < x < \infty; y > 0$, $u(x, 0) = f(x); -\infty < x < \infty$ with the condition that u is bounded as $y \to \infty$, u and u_x vanish as $|x| \to \infty$

Q.3. B) Answer the following questions (Any two)

- Solve the differential equation $z^2(p^2z^2 + q^2) = 1$ (a) (04)
- Find the complete integral of $p^2 + q^2 = x + y$ **(b)**
- If $\beta_r D' + \gamma_r$ is a factor of $F(D, D') \& \phi_r(\xi)$ is an arbitrary function of the single variable ξ if (04)(c) $\beta_r \neq 0$ then $u_r = \exp(\frac{-\gamma_r y}{\beta_r})\phi_r(\beta_r x)$ is a solution of F(D, D')z = 0.

 $(\mathbf{08})$

(06)

(04)

(08)

Q.4. A) (a) 1 2	Fill in the blanks with correct answer. The complementary function for the equation The solution of $\frac{\partial^2 u}{\partial y^2} = 0$ is	ation $(D^2D' + 2DD'^2 + D'^3)z = \frac{1}{x^2}$ is	(04)
(b)	Solve the equation $\frac{y-z}{yz} p = \frac{z-x}{zx} q = \frac{x-y}{xy}$	by Lagrange's Method.	(04)
Q.4. B)	Answer the following questions (Any tw	vo)	
(a)	Choose the correct option for the following multiple choice questions.		(03)
1	The longitudal vibrations of a bar satisfies the equation		
	(a) $u_{xx} = u_{tt}$	$(b) u_{xx} + u_{yy} = 0$	
	(c) $u_{xx} = u_t$	(d) $u_{xx} = u_{yy}$	
2	The solution $z = ax + by + ab$ of the PDE $z = px + qy + pq$ is a		
	(a)General Integral	(b)Singular Integral	
	(c) Complete Integral	(d)Partial Integral	
3	The PDE $xp - xyp = xz^2$ is a		
	(a)Linear PDE	(b)Semi-linear PDE	
	(c)Quasi-linear PDE	(d)non Linear PDE	
(b)	Solve $\frac{\partial^2 z}{\partial x \partial y} = x^2 y$		(03)
(c)	Find the characteristic equation of the PI	DE $u_x + 2u_y = u$, $u(0, y) = y$ on $\Gamma = \{(0, r)\}$.	(03)