Semester: 1

Date: 21/05/2018
Subject Code: 11204101
Time: 10:30 am to 1:00 pm
Subject Name: Quantum Mechanics-I \& Mathematical Physics-I

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.

Q.1. A) Essay type (Each of $\mathbf{0 4}$ marks)

(a) Using partial fraction, find the inverse Laplace transform of following-

1) $\frac{s+10}{s^{2}-s-2}$
(b) Derive one-dimensional Schrodinger equation.
Q.1. B) Answer the following questions (Any two)
(a) Define the following
1.Define Laplace.
2.Define stark effect.
(b) Derive hydrogen molecule.
(c) Find Laplace inverse of the $\frac{s}{(s+1)^{2}}$
Q.2. A) Answer the following questions.
(a) Define the following.
1.Define exchange interaction.
2.Define convolution theorem.
(b) Explain non-degenerate case.
Q.2. B) Answer the following questions (Any two)
(a) Define the following.
1.Homomorphism.
2.Isomorphism.
3.Reducible.
(b) Explain upper bound on ground state energy.
(c) Explain in detail WKB.
Q.3. A) Solve the following- (Each of $\mathbf{0 4}$ marks)
(a)Solve IVP by Laplace transform
$\mathrm{y}^{\prime}-4 \mathrm{y}=2 e^{2 t}+e^{4 t} \mathrm{y}(0)=0$
(b)Explain Bohr-Sommerfield quantum condition.
Q.3. B) Answer the following questions (Any two)
(a) Short note
1.Application of Laplace.
2.Reciprocal tensor.
(b) Solve by definition Laplace transform $\mathrm{f}(\mathrm{t})=t^{n}$.
(c) Explain in detail perturbation theory for discrete levels.
Q.4. A) Answer the following questions.
(a) Short note.
1.Invariant tensor.
2.Kronekar delta symbol.
(b) Explain two-electron atoms.
Q.4. B) Answer the following questions (Any two)
(a) Solve the following.
1.Write formula for Laplace derivative.
2.Write formula for Laplace integration.
3.Define Schur's Lemmas.
(b) Explain symmetric and anti-symmetric tensor.
(c) Explain superscript and sub-script.
