PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc. Summer 2018-19 Examination

Enrollment No: _____

Date: 08/04/2019 Time: 10:30am to 1.00 pm Total Marks: 60

Instructions:

Semester: 2

1. All questions are compulsory.

Subject Code: 11206154

2. Figures to the right indicate full marks.

Subject Name: Advanced Linear Algebra

- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1. A) Answer the following Questions.(Any one)

- (a) Let $T: V \to W$ be a linear transformation. Then prove the following:
 - i) If X is a subspace of V, then T(X) is a subspace of W.
 - ii) If Y is a subspace of W, then $T^{-1}(Y)$ is a subspace of V containing Ker(T).
 - iii) Assume X_1, X_2 are subspaces of V both containing Ker(T). If $T(X_1) = T(X_2)$, then $X_1 = X_2$.
- (b) Let *V* be an *n*-dimensional vector space and *T* an operator on *V*. Then prove that there exists a vector *z* such that $\mu_T(x) = \mu_{T,z}(x)$.

Q.1. B) Answer the following questions. (Any two)

(a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T(v) = \begin{pmatrix} 2 & -1 & 1 \\ -3 & 4 & -5 \\ -3 & 3 & -4 \end{pmatrix} v$. Let $v = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$. Determine

minimal polynomial of T with respect to v.

- (b) Let V be a vector space with basis B_v = (v₁, v₂,..., v_n), W be a vector space with basis B_w = (w₁, w₂, ..., w_m), and T ∈ L(V, W). Let B_v' = (f₁, f₂, ..., f_n) be the basis dual to B_v and B'_w = (g₁, g₂, ..., g_m) be the basis dual to B_w. Then show that M_{T'}(B'_w, B'_v) = M_T(B_v, B_w)^{tr}.
 (c) Let V be an n-dimensional vector space and T an operator on V. Then Show that there exists a
- non-zero polynomial f(x) of degree at most n^2 such that $f(T) = 0_{V \to V}$.

Q.2. A) Answer the following questions.(Any two)

- (a) Assume $T: V \to W$ is a linear transformation. Then show that *T* is injective if and only if $Ker(T) = \{0_V\}$.
- (b) Let V be a finite-dimensional inner product space and assume that $f \in V'$. Then prove that there exists a unique vector $v \in V$ such that $f(u) = \langle u, v \rangle$ for all $u \in V$.

(c) Let
$$w_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
, $w_2 = \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}$ be two vectors in \mathbb{R}^4 . Set $W = span(w_1, w_2)$. Then

find orthogonal projection of the vector $v = \begin{pmatrix} 1 \\ 3 \\ -4 \\ 6 \end{pmatrix}$ onto W.

Q.2. B) Answer of the following questions.(Any one)

- (a) Let *V* be an inner product space and $u, v \in V$ be vectors in *V*. Then show that $||u+v|| \le ||u|| + ||v||$. Moreover, if $u, v \ne 0$, equality holds only if there exists $\lambda > 0$ such that $v = \lambda u$.
- (b) Let f(x) and $d(x) \neq 0$ be polynomials with coefficients in F. Prove that there exists unique polynomials q(x) and r(x), which satisfy f(x) = q(x)d(x) + r(x), where either r(x) = 0 or deg(r(x)) < deg(d(x)).

(08)

(08)

 $(\mathbf{08})$

(06)

Q.3. A) Answer the following questions.

- (a) Let V be an inner product space and T an operator on V. Then prove that there exists an isometry S on V such that $T = S\sqrt{T^*T}$.
- (b) Let V be a finite inner product space and T an operator on V. Suppose $S = \{v_1, v_2, ..., v_n\}$ is an orthonormal basis of V such that T(S) is an orthonormal basis of V. Then show that T is an isometry.

Q.3. B) Do as directed.

(a) Let $V = \mathbb{R}_2[x]$ be a vector space over \mathbb{R} . Then find $||x^2 + 1||$, if the inner product is defined

as $\langle f(x), g(x) \rangle = \int_0^1 f(x)g(\overline{x})$, where $f(x), g(x) \in \mathbb{R}_2[x]$.

(b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by T(x, y, z) = (x + y, y + z, 3z). Then find matrix of $T, M_T(B_1, B_2)$, where $B_1\{(1,0,0), (0,1,0), (0,0,1)\}$ and $B_2 = \{(1,0,-1), (0,1,-1), (0,0,1)\}$

- (c) Let *V* be a vector space over \mathbb{F} and $v \in V$. Then show that 0, v = 0.
- (d) Let V be an inner product space and let $u \in U$. Prove that u^{\perp} is a subspace of V.

Q.4. A) State whether the following statements are true or false. Justify your answer. (08)

(a) Let $D: \mathbb{R}^3[x] \to \mathbb{R}^2[x]$ be a linear transformation defined by $D(a_0 + a_1x + a_2x^2 + a_3x^3) = a_1 + 2a_2x + 3a_3x^2$. Then *D* is one-one.

- (b) If *T* be a normal operator on *V*. Then for all vectors $v \in V$, $||T(v)|| = ||T^*(v)||$.
- (c) Let V be an inner product space and W be a subspace of V. Then $W \cap W^{\perp} \neq \{0\}$.
- (d) Assume T is normal and λ is a scalar. Then $T \lambda I$ is normal.

Q.4. B) Select the most appropriate answer for the following multiple choice questions. (06)

(1) If *T* is an isometry on a finite dimensional vector space *V*. Then which of the following correct?a) T is one one but not onto

a) I is one-one but not onto	b) I is one-one and onto
c) T is neither one-one or onto	d) T is onto but not one-one

- (2) Let W be a 3-dimensional subspace of R⁷ over R. Then what is the dimension of W[⊥]?
 a) 3
 b) 4
 c) 7
 d) 1
- (3) Let $T: V \to W$ be an isomorphism and $n = \dim(V)$, $m = \dim(W)$. Then which of the following must be true?

a) $m > n$	b) $m = n$
c) $n < m$	d) No relation between <i>m</i> and <i>n</i> .

- (4) If *T* is an operator on *V*, then which of the following correct?
 a) *T***T* is normal
 b) *TT** is normal
 - c) Both T^*T and TT^* are normal d) neither T^*T nor TT^* is normal

(5) Consider the transformation $T: \mathbb{R}_2[x] \to \mathbb{R}^2$ given by T(f) = (f(1), f(2)). Then Ker(T) =

a) $span\{(x-1)(x-2)\}$	b) $span\{(x-1)\}$
c) {0}	d) $span\{(x-2)\}$
(6) Let T be a self-adjoint operator on	V. Then eigenvalues of <i>T</i> are
a) purely imaginary	b) complex
c) real	d) irrational

(08)