PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc., Summer 2018-19 Examination

Semester: 2 Subject Code: 11206153 Subject Name: Advanced Abstract Algebra

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1. Answer any ONE of the following.

- A)
- (a) Let G be a finite group such that p^m divides o(G) and p^{m+1} does not divide o(G), where p is a prime number and m is a positive integer *then* prove that G has subgroups of order $p, p^2, ..., p^m$.
- (b) (i)Let H and K be finite groups of G , then prove that

$$o(HK) = \frac{O(H)O(K)}{O(H \cap K)}$$

(*ii*) If $o(H) > \sqrt{o(G)}$ and $o(K) > \sqrt{o(G)}$ Using above result prove that $H \cap K \neq \{e\}$

Q.1. Answer the following questions (Any two)

B)

	(a) Define cyclic group and prove that "every group of prime order is cyclic".	(04)
	(b) If G is a group with order $11^2 \times 13^2$ then find the number of 11-sylows subgroups and 13-	(04)
	sylows subgroups. Also check G is a simple group or not.	
	(c) Prove that any two right cosets of a subgroup are either disjoint or identical.	(04)
Q.2.	Answer the following questions.	
A)	(a) Short note/ Brief note (2x2)/ Fill in the blanks. (Each of 02 marks) 1 Prove that $(a^{-1})^{-1} = a$	(04)
	2. Check Z is a subfield of Q or not?	
	(b) Prove A subgroup H of a group G is the normal subgroup of G if and only if each left coset for	(04)
	that is a right coset of H in G.	
Q.2.	Answer the following questions (Any two)	
B)	(a) Short note/ Multiple choice questions. (Each of 01 marks)	(03)
	1. Check Z ₆ is a integral domain or not. ?	
	2. Write normal series of S_{A} .	
	3.Normalizer $N(a)$ of a in G is a normal subgroup.(T/F)	
	(b) Prove in the ring Z of integers the ideal generated by Prime integer is a maximal ideal.	(03)
	(c) Find the isomorphic refinement of the subnormal series $Z \supset 4Z \supset 8Z \supset \{0\}$ and $\supset 9Z \supset \{0\}$.	(03)
Q.3.	Essay type/ Brief note (4x2) (Each of 04 marks)	(08)
Ã)		
	(a)State and prove langrange's theorem	
	(a) If R is a Boolean ring then prove	
	1. $a + a = 0 \forall a \in R$	
	2. $a + b = 0 \Rightarrow a = b$	
	3. Every Boolean ring is commutative.	
Q.3.	Answer the following questions (Any two)	
B)	(a) Short note/ Brief note (2x2)/ Schematically label the figures (2x2) (Each of 02 marks)	(04)
	1. Using homomorphism check the ring 2Z is isomorphic to the ring 3Z or not?	
	2. If $f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ and $g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ solve the equation $fh = g$.	
	(b) Prove	(04)
	If $f \in F[x]$ and deg f = 2 or 3 then $f(x)$ is reducible over F if and only if $f(x)$ has a	
	zero in F.	

Page **1** of **2**

Enrollment No:____

Date: 05/04/2019

Total Marks: 60

Time: 10:30am to 1:00pm

(08)

o(ab)=mnQ.4. Answer the following questions. A) (a) Short note/ Brief note (2x2)/ Fill in the blanks. (Each of 02 marks) (04)1. Solve the equation $x^2 + 1 = 0$ in Z_5 . 2. Prove that the group $(\{1,2,3,4\},\times_5)$ is cyclic. (b) The union of two subgroups of a group is a subgroup iff one of them is contained in the other. (04)Q.4. Answer the following questions (Any two) B) (a) Short note/ Multiple choice questions. (Each of 01 marks) (03)1. Show that i is a generator of $(\{i, -i, 1, -1\}, \times)$. 2. Prove that $f(x) = 25x^5 - 9x^4 + 3x^2 - 12$ is irreducible over Q. *3. Find all the units of* Z_{12} *.* (b) In a group G, for $a, b \in G, O(a) = 5, b \neq e$ and $aba^{-1} = b^2$. Find the order of b. (03)(03)

(c) If G is an abelian group, if $a, b \in G$, such that o(a)=m, o(b)=n and (m,n)=1 then prove that

(c) Prove that every finite integral domain is a field.

(04)