Seat No:

Enrollment No:

PARUL UNIVERSITY

FACULTY OF APPLIED SCIENCE M.Sc., Summer 2018-19 Examination

Semester: 2 Date: 01/04/2019

Time: 10:30 am to 01:00 pm **Subject Code: 11206151 Total Marks: 60**

Subject Name: Complex Analysis

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1. A) Answer the following questions

(08)

(a) If
$$f(z) = \begin{cases} \frac{x^3(1-i)+y^3(1+i)}{x^2+y^2} & z \neq 0 \\ 0 & z = 0 \end{cases}$$
 then prove that C-R equations are

satisfied at z = 0 but function is not differential at z = 0.

(b) Check whether the following function f(z) continuous or not at point = 0.

$$f(z) = \begin{cases} \frac{Im(z^2)}{|z|} & z \neq 0 \\ 0 & z = 0 \end{cases}$$

Q.1. B) Answer the following questions (Any two)

(a) Answer the following questions. (Each of 2 Marks)

(04)

- 1. Find the Principal Value of i^{i}
- 2. Check the analytic behavior of the function $f(z) = x^2 + iy^2$
- (b) Using Definition of Differentiability prove that $f(z) = |z|^2$ is differentiable only at origin in (04)Z -plane.
- (c) Prove that, if a function f(z) = u(x, y) + i v(x, y) is analytic in domain D, then its (04)component functions u and v are Harmonic in D.

Q.2. A) Answer the following questions.

(a) Answer the following questions. (Each of 2 Marks)

(04)

- 1. Without finding the actual value of the integral prove that $\left| \int_C \frac{dz}{z^2 1} \right| \leq \frac{\pi}{3}$, where c is the arc of the circle |z| = 2 from z = 2 to z = 2i in the first quadrant of Z-plane.
- 2. If c is any closed contour then prove that $\int_c z dz = 0$.
- (04)(b) If f is analytic throught a simply connected domain D, then prove that $\int_C f(z) dz = 0$ for every closed contour c lying in D.

Q.2. B) Answer the following questions (Any two)

- (a) Choose the correct option for the following multiple choice questions. (Each of 01 marks) (03)
- 1. The integral $\oint_{|z|=2} \frac{\cos z}{z^3} dz$ equals
 - a). πi

b). $-\pi i$

c). 2\pi i

- 2. The function $f(z) = \sin z$ is differentiable at
 - a). z = 0 (b) $z \neq 0$ (c) nowhere (d) everywhere
- 3. For second order zero

3. For second order zero

(a)
$$f(z_0) = f'(z_0) = 0$$
 and $f''(z_0) \neq 0$ (b) $f(z_0) = 0$, $f'(z_0) \neq 0$ and $f''(z_0) \neq 0$

(c) $f(z_0) = f'(z_0) = f''(z_0) = 0$ (d) none of these

(b) Evaluate $\oint_C \frac{2z^3 + z^2 + 4}{z^4 + 4z^2} dz$, where c is the circle $|z - 2| = 4$, clockwise

(03)

(c) Verify Cauchy Gaurset theorem for $f(z) = \frac{1}{z^2}$ along the circle |z|=1. (03)

Q.3. A) Answer the following questions

(08)

- (a) State and Prove Cauchy's Residue theorem (b) Using the Residue theorem evaluate $\int_{-\infty}^{\infty} \frac{\cos ax}{k^2 + x^2} dx = \frac{\pi}{k} e^{-ka}$; a > 0, k > 0

Q.3. B) Answer the following questions (Any two)

(a) Answer the following questions. (Each of 2 Marks)

(04)

- 1. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{n+1}{(n+2)(n+3)} z^n$
- 2. Find the residue of the function $f(z) = \cot z$

- (b) What is the map of real axis of Z- plane under the transformation $w = \frac{z+i}{z-i}$. Hence deduce the (04)image of upper and lower half of Z- plane under this transformation.
- (c) Prove that An isolated singular point z_0 of function f is a pole of order m if and only if f(z) can be written in the form $f(z) = \frac{\varphi(z)}{(z-z_0)^m}$, where $\varphi(z)$ is analytic and nonzero at z_0 . (04)

Moreover Res $f(z)_{z=z_0} = \varphi(z_0)$ if m = 1 and $\text{Res } f(z)_{z=z_0} = \frac{\varphi^{n-1}(z_0)}{(m-1)!}$ If $m \ge 2$

Q.4. A) Answer the following questions.

- (a) Expand $f(z) = \frac{z^2 1}{(z+2)(z+3)}$ in the region (i) |z| < 2, (ii) |z| > 3(04)
- (b) Prove that under the bilinear transformation cross ratio of four points remain invariant (04)

Q.4. B) Answer the following questions (Any two)

- (a) Choose the correct option for the following multiple choice questions. (Each of 01 marks) (03)
 - 1. The invariant point of the transformation $w = \frac{z-1}{z+1}$ are

(a)
$$z = i$$
 (b) $z = \pm i$ (c) $z = \frac{i}{2}$ (d) $z = -\frac{i}{2}$
2. The singularity of the function $\frac{z - \sin z}{z^2}$ is

- - (a) z = 0 (b) z = 2 (c) z = -2 (d) z = 4
- 3. If f(z) is entire function then the Taylor series is
- (a) convergent for all z (b) divergent for all z (c) constant (d) none of these
- (b) Determine the bilinear transform which sends the points z = 1, i, -1 of Z-plane into the points (03)w = 1, -i, -1 respectively.
- (c) Explain the conformal behavior of $w = z^2$ at z = 0. (03)