Enrollment No: _____

PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc. Winter 2017-18 Examination

Semester: 1Date: 26/12/2017Subject Code: 11206104Time: 02:00 pm to 04:30 pmSubject Name: TopologyTotal Marks: 60Instructions:Instructions are compulsory.1. All questions are compulsory.Instructions are compulsory.2. Figures to the right indicate full marks.Instructions wherever necessary.3. Make suitable assumptions wherever necessary.Instruction on new page.		Time: 02:00 pm to 04:30 pm	
Q.1. A)	Do as directed: (Each of 04 marks)	(0)8)
	(a) State and prove Lindelof's Theorem.		
	(b) Show that every closed subspace A of a normal space X is normal.		
Q.1. B)	Answer the following questions (Any two)		
	(a) Do as directed:	(0)4)
	1. Is the product of two path connected spaces necessarily connected?		
	2. Let X and Y be topological spaces. Describe under which condition a said to be continuous.	function $f: X \rightarrow Y$ is	
	(b) Prove that a closed subset of a compact space is compact.	(0)4)
	(c) Let A and B be two compact subsets of X. Show A \cup B is compact and	d provide an example (0)4)
	that $A \cap B$ is not compact.		
Q.2. A)	Answer the following questions.		
	(a) State whether the following statement are true or false with justification	1 (0)4)
	1. Every metric space can also be seen as topological space.		
	2. There are topological space with countably many points, which have un sets.	acountable many open	
	(b) If Y is a subspace of X, a separation of Y is a pair of closed disjoint not	n-empty sets A& B (0)4)
	whose union is Y, neither of which contains a limit point of the other.	Prove that the	
	separation is connected if there exists no separation of Y.		
Q.2. B)	Answer the following questions (Any two)		
	(a) Multiple choice questions.	(0)3)
	1. Which of the following statements is correct		
	a) Intersection of two connected sets in a topological space is connect	ed.	
	b) Countable union of compact sets in a topological space is compact.		
	c) Closure of a compact sets in a topological space is compact.		
	d) None of the (a), (b), (c) is correct.		
	2. An uncountable sets with co-countable topology is		
	a) Second countable (b) First countable but not second countable	le	
	c) Not first countable (d) Separable		
	3. Let $X = \{a, b, c\} \& T = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ then T is		
	a) The indiscrete topology on X		

- b) The discrete topology on X.
- c) A topology on X which cannot be include by a metric on X.
- d) A Hausdorff topology on X.
- (b) Provide a counterexample. That is, construct an example of two topological spaces X and Y (03) and a continuous function f : X → Y, where X is connected but Y is not. Make sure to show that, in your example, f is continuous, X is connected, and Y is not connected.
- (c) Prove that a metric space with Bolzano Wierstrass property is a sequentially compact metric (03) space.

Q.3. A) Do as directed: (Each of 04 marks)

- (a) Prove that separable metric space is second countable.
- (b) Give an example of T_2 space which is not regular.

Q.3. B) Answer the following questions (Any two)

(a) Do as directed:

- **1.** Prove that a topological space X is T_1 if and only if all singletons are closed.
- 2. Give an example of a separable topological space which is not second countable.
- (b) Let X be compact Hausdorff space. Show that X is metrizable if and only if it is second (04) countable.
- (c) If F and K are subsets of a metric space such that F is closed and K is compact, then $F \cap K$ is (04) compact.

Q.4. A) Answer the following questions.

(a) Do as directed: (Each of 02 marks)

- **1.** If I remove finitely many points from the set $S_1 = \{f(x; y) : x^2 + y^2 = 1\}$, is the resulting set connected? Provide an argument supporting your answer.
- 2. If I remove finitely many points from the set $D = \{f(x; y) : x^2 + y^2 \le 1\}$, is the resulting set compact? Provide an argument supporting your answer.
- (b) Show that the components of X are connected disjoint subspaces of X whose union is X such (04) that each non-empty connected subspace of X intersects only one of them.

Q.4. B) Answer the following questions (Any two)

(a) Do as directed:

- 1. Let X be a topological space. Let A be a subset of X. Define the closure A of A.
- 2. Define when a topological space X is first-countable.
- Given a subset A ⊂ X, where X is a topological space, carefully define what it means for p to be a limit point of A.
- (b) Prove that the union of collection subspaces of X that have a point in common is connected. (03)
- (c) Prove that composition of two continuous maps on a topological space is continuous. (03)

(08)

(04)

(04)

(03)