Seat No:	Enrollment No:	
PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc., Winter 2017-18 Examination		
Semester:1 Subject Cod Subject Nan	e: 11206103 Date: 22/12/2017 Time: 02:00 pm to 04:30 pr ne: Advanced Numerical Analysis Total Marks: 60	n
Instructions 1. All question 2. Figures to 3. Make suita 4. Start new of	: ons are compulsory. the right indicate full marks. able assumptions wherever necessary. question on new page.	
Q.1. A)	Use householder's method to reduce matrix $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$ in tri-diagonal matrix.	(08)
Q.1. B) (a)	Answer the following questions (Any two) Do as directed (Each of 02 marks) 1. Find the derivative of the function $f(x)$ at x=8.5 using the following data $\hline x: 1.8 1.9 2.0 2.1 2.2$ f(x) 10.8894 12.7032 14.7781 17.14898 19.8550	(04)
(b)	2. Evaluate $\int_{0}^{1} x \sin x dx$ using Trapezoidal method. Using Runge Kutta 4 th order method, determine $y(0.5)$ for differential equation $\frac{dy}{dx} = x - y$;	(04)
(c)	y(0) = 1; by taking step size h=0.5. Using Euler's method, solve the differential equation $\frac{dy}{dx} = \frac{y - x}{y + x}$; $y(0) = 1$ where	(04)
Q.2. A) (a)	$0 < x \le 0.5$, by taking h=0.25. Answer the following questions. Do as directed: (Each of 2 marks) 1. Write advantages and disadvantages of Secant Method for minimization function.	(04)
(b) Q.2. B)	2. Use central difference method to find $f'(1)$ if $f(x) = 1 - e''$, by taking step size h=0.25. Write Algorithm of Nelder Mead method. Answer the following questions (Any one) (4 - 1 - 1)	(04)
(a)	Using Power method Find largest eigenvalue of $A = \begin{bmatrix} -1 & 1 & 1 \\ -1 & 3 & -2 \\ 1 & 2 & 3 \end{bmatrix}$	(06)
(b)	Use Five point formula for Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ to find the temperature at given	(06)
	nodes. Take h=k=0.5.	
	30 20 0	

Q.3. A) Do as directed: (Each of 4 marks)

- (a) Find the minimum value of the function $f(x) = x^2 \sin x$ in [0.3,0.5] using Golden section method. Perform 5 iterations.
- (b) Solve the boundary value problem y''-y = x; y(0) = y(1) = 0 with h=0.25. Using Finite difference method.

Q.3. B) Answer the following questions (Any two)

(a) Evaluate
$$\int_{1}^{1.5} x^2 \ln(x) dx$$
 using Romberg method. (04)

(b) Use Steepest descent method to find minimum of function $f(x, y) = x^2 + y^2 - 4x - y - xy$ initial guess is $X_0 = (1,0)$. (04)

(c) Solve the differential equation
$$\frac{dy}{dx} = 1 + y$$
; $y(0) = 1$ using Taylor's method at x=0.1. (04)

Q.4. A) Using Shooting method solve the boundary value problem $u'' = 6u^2 - x$, u(0) = 1, u(1) = 5. (08)

Take step size $h = \frac{1}{3}$.

Q.4. B) Answer the following questions (Any one)

- (a) Using Finite difference method, Solve, $u_{tt} = 4u_{xx}$ for $0 \le t \le 0.02$, $0 \le x \le 1$ u(0,t) = u(1,t) = 0 $0 \le t \le 0.02$ $u(x,0) = \sin \pi x + \sin 2\pi x$; $0 \le x \le 1$ $u_t(x,0) = 0$, $0 \le x \le 1$
- (b) Use Crank Nicholsen method to solve the heat equation $u_t = u_{xx}$, $0 \le t \le 0.1$ with initial condition u(0,t) = u(1,t) = 0; $u(x,0) = \sin \pi x$, $0 \le x \le 1$ taking h=0.2, k=0.1.

(08)

 $(\mathbf{0}\mathbf{4})$

(06)