\qquad
\qquad
PARUL UNIVERSITY

FACULTY OF APPLIED SCIENCE

M.Sc., Winter 2017-18 Examination

Date: 20/12/2017
Time: 2:00pm to 4:30pm
Total Marks: 60

Subject Name: Theory of Ordinary Differential Equation

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q.1. A) Consider the problem : $y^{\prime}=1-2 x y, y(0)=0$
a) Find a solution for this linear equation
b) Consider the above problem on $R:|x| \leq 1 / 2, \| y \mid \leq 1$. If $f(x, y)=1-2 x y$, then show that $|f(x, y)| \leq 2,(x, y) \in R)$. Also show that all successive approximation to the solution exists on $|x| \leq 1 / 2$ and the graph remains in R
c) Show that f satisfies Lipschitz condition on R with Lipschitz constant $k=\mathbf{1}$ and show that the successive approximations converge for $\mid x \| \leq 1 / 2$.
d) Show that the approximation ϕ_{3} satisfies $\| \phi(x)-\phi_{3}(x) \mid \leq 0.01$ for $\| x \left\lvert\, \leq \frac{1}{2}\right.$.
e) Compute \emptyset_{3}.

Q.1. B) Answer the following questions :(Any two)

(a) Do as directed:

1 Examine whether $\emptyset(x)=1+e^{-x^{2}}$ is a solution of the integral equation $y=\int_{0}^{x} t y d t$ on $(-\infty, \infty)$, or not.
2. Let $f(x, y)=y^{2} x$ on $R:|x| \leq 1, y \leq 1$ check whether f satisfies Lipschitz condition on R or not.
(b) Solve the equation $y^{\prime \prime}=\left(y^{\prime}\right)^{2}+1, \phi(0)=0, \phi^{\prime}(0)=0$.
(c) Find a solution $\vec{\phi}$ of the given system $y_{1}^{\prime}=y_{1}, y_{2}^{\prime}=y_{1}+y_{2}$ which satisfies

$$
\vec{\phi}(0)=(1,2)
$$

Q.2. A) Answer the following questions:

(a) State whether the following statement are true or false with justification.

1. The B.V.P $x^{\prime \prime}-4 x=e^{t}, 0<t<1$, with boundary condition

$$
x(0)=x(1)=x^{\prime}(0)=x^{\prime}(1)=0 \text { is linear. }
$$

2. The origin is an unstable critical point for the system

$$
\begin{equation*}
x_{1}^{\prime}=2 x_{1} x_{2}+x_{1}^{4} ; x_{2}^{\prime}=6 x_{1}^{2}+x_{2}^{5} . \tag{04}
\end{equation*}
$$

(b) Let us consider the following continuous time non linear system $\left\{\begin{array}{l}\dot{x_{1}}=x_{1}-x_{1} x_{1} \\ \dot{x_{2}}=x_{1} x_{2}-x_{2}\end{array}\right.$ compute the equilibrium points of the system and study the stability of these points using the reduced Lyapunov criterion.
Q.2. B) Answer the following questions: (Any two)
(a) Determine the singular points for $x(x-1)^{2} y^{\prime \prime}-3 y^{\prime}+5 y=0$ and classify them.
(b) Find the upper bound for $|\vec{f}(x, \vec{y})|$ for (x, \vec{y}) in R where $\vec{f}(x, \vec{y})=\left(y_{2}^{2}+1, x+y_{1}^{2}\right) ;|x| \leq 1, y \leq 1, \vec{y} \in C_{2}$.
(c) Determine the limit of any solution as $t \rightarrow \infty$ for the system $X^{\prime}=A x$, where
$\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 2 & 2 \\ 1 & -1 & 0\end{array}\right]$.
Q.3. A) Solve the following equation by power series $x^{2} y^{\prime}+\frac{3}{2} x y^{\prime}+x y=0$.
Q.3. B) Answer the following questions (Any one)

1. Consider the non-homogeneous equation $\frac{d \bar{y}}{d x}=\left[\begin{array}{cc}6 & -3 \\ 2 & 1\end{array}\right]+\left[\begin{array}{c}e^{5 x} \\ 4\end{array}\right]$ find the unique
solution $\bar{\psi}$ of the non-homogeneous equation which satisfies $\quad \bar{\psi}(0)=\left[\begin{array}{l}9 \\ 4\end{array}\right]$ and having $\overline{\phi_{1}}(0)=\left[\begin{array}{l}e^{3 x} \\ e^{3 x}\end{array}\right], \overline{\phi_{2}}(0)=\left[\begin{array}{l}3 e^{4 x} \\ 2 e^{4 x}\end{array}\right]$ as pre fundamental set of solutions of corresponding homogeneous equation.
2. Let f be a continuous real valued function defined on some interval $R:\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right| \leq b,(a, b>0)$ and let $|f(x, y)| \leq M$ in the real XY plane. Further suppose that f satisfies a Lipschitz condition with constant K in R . Then the successive approximation $\phi_{0}=y_{0}, \phi_{k+1}=y_{0}+\int_{x_{0}}^{x} f\left(t, \phi_{k}(t)\right) d t ;(k=0,1,2, \ldots)$ converges on the interval $I:\left|x-x_{0}\right| \leq \alpha=\min \{a, b / M\}$ to a solution ϕ of the initial value problem $\bar{y}^{v}=\vec{f}(x, \vec{y})$, $\mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}$.
Q.4. A) Find the Green's function for the following B.V.P
$y^{n}(x)+y(x)=f(x) ; y(0)=0, y^{\prime}(1)=0$.
Q.4. B) Answer the following questions (Any two)
(a) Show that any solution of $x^{t}=A x$ tends to zero as $t \rightarrow 0$ where $A(t)=\left[\begin{array}{cc}-t & \operatorname{sint} \\ 0 & e^{-t}\end{array}\right]$.
(b) Is the polynomial $r^{2}-2 r+3=0$ stable?
(c) If $y_{1}=x$ is one solution of $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$ then find other solution.
