PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc., Winter 2017-18 Examination

Enrollment No:_____

Semester: 1	Date: 26/12/2017
Subject Code: 1120/10/	Time: 02:00nm to 04:30nm
Subject Cour. 11204104 Subject Name: Solid State Diverse & Floatronics I	Total Marks: 60
Subject Name. Sond State I hysics & Electromes-I	
Instructions:	
 All questions are compulsory. Figures to the right indicate full marks. 	
2. Figures to the right indicate run marks.	
5. Make suitable assumptions wherever necessary.	
4. Start new question on new page.	
$\mathbf{O}(1 \cdot \mathbf{A})$ Answer the following questions (Each of 04 marks)	(08)
(a) Discuss the origin of band gap on the basis of nearly free	electron model?
(a) Discuss the origin of band gap on the basis of hearly new (b) Explain working of class A push pull power amplifier?	
(b) Explain working of class-A push pull power amplifier?	
(a) Do as directed (Each of 02 marks)	(04)
(a) Do as unected. (Each of 02 marks)	(04)
1. Define Fermi energy and Fermi volume?	
2. Write applications of current to voltage convertor?	
(b) Explain Kronig-Penny model?	(04)
(c) Explain Reduced Zone Scheme.	(04)
Q.2. A) Answer the following questions.	
(a) Do as directed. (Each of 02 marks)	(04)
1. Write a note on Fermi surface?	
2. Define bistablemultivibrator?	
(b) Describe Op-amp as Square wave generator with necessary figure	e? (04)
Q.2. B) Answer the following questions (Any two)	
(a) Do as directed. (Each of 01 marks)	(03)
1. What is an external orbit?	
2. Define energy gap.	
3. State any one advantage and disadvantages of single ended tran	sformer coupled amplifier.
(b) Write a note on Quantization of orbits.	(03)
(c) Explain Class B in detail?	(03)
Q.3. A) Answer the following questions. (Each of 04 marks)	(08)
(a) Explain Bloch function in detail?	
(b) Draw and explain working of integrator circuit using Op-amp	
O.3. B) Answer the following questions (Any two)	
(a) Do as directed. (Each of 02 marks)	(04)
1. Define lattice constant in detail?	· · · ·
2. Write a short note on Slew rate?	
(b) Draw and explain working of differentiator circuit using Op-amp.	(04)
(c) Write a note on pseudo potential method.	(04)
O.4. A) Answer the following questions.	· · · ·
(a) Do as directed. (Each of 02 marks)	(04)
1. Write a short note on Frequency compensation in op-amps?	
2. Write a note on Bloch Theorem.	
(b) Draw three energy bands of a linear lattice in different zones	s schemes? (04)
O.4. B) Answer the following questions (Any two)	
(a) Do as directed (Each of 01 marks)	(03)
1 What do you mean by frequency compensation in on-amps	
2 Define Fermi surface?	
3 Define De-Hans-van Alnhen effect	
(b) Draw circuit diagram of Schmitt trigger using transistor and	explain its working in (03)
Short?	CAPICINI ILS WORKING III (03)
SHULL:	solid with short (02)
Discussion?	
D1500551011:	