PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc., Winter 2018-19 Examination

Enrollment No:_____

Mi.Sc., Winter 2018-19 Examination	
Semester: 3 Subject Code: 11206206	Date: 01/11/2018 Time: 10.30 am to 1.00 pm
Subject Name: Fuzzy and Evolutionary Computing	Total Marks: 60
Instructions:	
1 All questions are compulsory	
2. Figures to the right indicate full marks.	
3. Make suitable assumptions wherever necessary.	
4. Start new question on new page.	
1	
Q.1. Essay type/ Brief note (4x2) (Each of 04 marks) A)	(08)
(a)Examples of Fuzzy Logic.	
(b) Explain classic sets and fuzzy subset.	
Q.1. Answer the following questions (Any two)	
B)	
(a) Short note/ Brief note (2x2)/ Schematically label the figures (2x2) (Each	(04) (04)
1. Draw and explain Support.	
2. Draw and explain core and alpha cut on Fuzzy systems.	
(b) Different membership functions in Fuzzy systems.	(04)
(c) Discuss three common operations in Fuzzy systems.	(04)
Q.2. Answer the following questions.	
A) (a) Short note/ Brief note $(2x2)$ / Fill in the blanks. (Each of 02 marks)	(04)
1. What is an Evolutionary Computation?	
2. Discuss Role of Genetic Algorithm for Evolutionary Computat	ion.
	(04)
(b) write the general scheme of an Evolutionary Algorithm in pseudo	o-code. (04)
\mathbf{O} 2 Answer the following questions (Any two)	
B) (a) Short note/ Multiple choice questions (Fach of 01 marks)	(03)
1 Fuzzy graph	(03)
2 Draw the function grouph	
2. Draw the fuzzy graph.	
$b_1 b_2 b_3$	
$a_1 = 0.0 = 1.0 = 0.0$ $a_2 = 0.0 = 0.0 = 0.5$	
$a_3 \begin{bmatrix} 1.0 & 1.0 & 0.0 \end{bmatrix}$	
3. Advantage of fuzzy graph	
(b)	(03)
Let $X = \{x_1, x_2, x_3\}$	
$\begin{bmatrix} 0.7 & 0.9 & 0.4 \end{bmatrix}$	
is $R = 0.1 0.3 0.5$ a transitive relation?	
(c)	(03)
Prove that $R = \begin{bmatrix} 0.1 & 1 & 0.7 \end{bmatrix}$ is antisimilarity	relation?
0.7 0.7 1	

Q.3. Essay type/ Brief note (4x2) (Each of 04 marks)

A)

(a) predict score using max-min composition.

Speed of bowling = {fast bowling, medium bowling, spin bowling} and

Y= condition on pitches= {good wicket, fair wicket, sporting wicket, green wicket, crumblin wicket, rough wicket}

Let R denotes the relationship between speed of bowling and condition on pitch and Qdenotes the relationship between conditions on pitches and runs on the board.

	gd.w	f.w	s.w	gr.w	c.w	r.w
fast	0.6	0.5	0.4	0.1	0.9	0.5
R = medium	0.8	0.6	0.9	0.2	0.1	0.6
spin	0.7	0.8	0.6	0.7	0.1	0.2
		low.r	ave.r	hig.r		
	gd.1	w 0.4	0.8	0.7]		
	<i>f</i> .w	v 0.3	0.8	0.8		
and	Q = S.W	0.2	0.7	0.8		
	Q = gr.1	v 0.8	0.6	0.4		
	С.И	, 0.7	0.5	0.4		
	r.w	, 0.9	0.4	0.2		

(b) Refer above question solve max-product composition.

Q.3. Answer the following questions (Any two)

B)	(a) Short note/ Brief note (2x2)/ Schematically label the figures (2x2) (Each of 02 marks)	(04)
	1. Define cross-over and mutation.	
	2. Define Fitness Function.	
	(b) What is the Need of Hybridization of Genetic Algorithm with Fuzzy Logic?	(04)
	(c) Write Real-World Applications of Genetic Algorithms.	(04)
Q.4.	Answer the following questions.	
A)		
	(a) Short note/ Brief note $(2x2)$ / Fill in the blanks. (Each of 02 marks)	(04)

- 1. What is a uniform-cross over?
- 2. What effect does each of these have on the evolution process ?Cross over or mutation?

(b) Civan the	fallowing	momente D	and D	and the	tommlata T
(b) Given the	Tollowing	parents, P_1	and P_2 ,	and the	template 1

\mathbf{P}_1	Α	В	С	D	E	F	G	Η	Ι	J
P ₂	Е	F	J	Н	В	С	Ι	А	D	G
Т	1	0	1	1	0	0	0	1	0	1

Show how the following crossover operators work i) uniform crossover ii) orderbased crossover

Q.4. Answer the following questions (Any two)

B)

(a) Short note/ Multiple choice questions. (Each of 01 marks) (03)1. Assume the initial population was $x = \{17, 21, 4 \text{ and } 28\}$. Using one-point crossover, what is the probability of finding the optimal solution? 2. Assume the initial population was $x = \{17, 21, 4 \text{ and } 28\}$. Using multi-point crossover, what is the probability of finding the optimal solution?

3.one-point vs multi-point cross over------

(b) Outline the similarities and differences between Genetic Algorithms and Evolutionary (03)Strategies. (03)

(c) What are the Variation of parameters and techniques in genetic algorithm?

(04)