Enrollment No:_____

PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE 1.Sc. Winter 2018-19 Regular Examination

M.Sc. Winter 2018-19 Regular Examination	
Semester: 3Date: 23/10/2018Subject Code: 11206201Time: 10.30 am toSubject Name: Functional AnalysisTotal Marks: 60	1.00 pm
Instructions: 1. All questions are compulsory. 2. Figures to the right indicate full marks. 3. Make suitable assumptions wherever necessary. 4. Start new question on new page.	
Q.1. A) Let f be a bounded linear functional on a subspace Z of a normed space X . then ther exists a bounded linear functional \tilde{f} on X which is an extension of f to X and has the same norm $ \tilde{f} _{x} = f _{z}$ where $ \tilde{f} _{x} = \sup_{\substack{x \in X \\ x =1}} \tilde{f}(x) $, $ f _{z} = \sup_{\substack{x \in Z \\ x =1}} f(x) $.	e (08) e
 Q.1. B) Answer the following questions (Any two) (a) True or False with Justification (Each of 02 marks) 1. Every finite dimensional subspace Y of a normed space X is closed in X. 2. Every reflexive normed space X is complete. 	(04)
(b) Let $X = (X, d)$ be a metric space then i. A convergent sequence in X is bounded & its limit is unique. ii. If $x_n \to x$ and $y_n \to y$ in X then $d(x_n, y_n) \to d(x, y)$.	(04)
 (c) In a finite dimensional normed spaceX, any subset M ⊂ X is compact if and only is closed and bounded. O 2. A) Answer the following questions 	if M (04)
(a) Fill in the blanks. (Each of 02 marks) 1 is not separable. a) \mathbb{R} b) \mathbb{C} c) l^{∞} d) l^{p}	(04)
2 is not reflexive. a) $C[a b]$ b) $l^p[a b]$ c) l^∞ d) $l^p 1 \le n \le +\infty$	
(b) If Y is Banach space, then $B(X, Y)$ is Banach space. (0.2. B) Answer the following questions (Any two)	(04)
 (a)Do as directed:(Each of 01 marks) 1. Does every bounded linear operator defined on a subspace have a norm preservin extension? 	(03) g
2. If f is a non-zero linear functional on an infinite dimensional linear space X, does there exist a norm on X such that f is discontinuous?3. In which space, every convergent sequence is a Cauchy sequence?	
(b) A subspace M of a complete metric space X is itself complete if and on the set M is closed in X	ly if (03)
(c) A mapping T of a metric space X into a metric space Y is continuous if	and (03)
Q.3. A) The dual space of l^p ; here $1 and q is the conjugate of p, that is \frac{1}{p} + \frac{1}{q} = 1.$	(08)

Page 2 of 2

Q.3. B) Answer the following questions (Any two)

(a) Every finite dimensional subspace Y of a normed space X is complete. In particular, every finite dimensional normed space is complete.

(b) Let Y be any closed subspace of a Hilbert space H then $H = Y \bigoplus Z; Z = Y^{\perp}$.

(c) Let $T: X \to X$ be a continuous mapping on a complete metric space

X = (X, d), and suppose that T^m is a contraction on X for some positive

integer *m*. then *T* has a unique fixed point.

Q.4. A) The Hilbert-adjoint operator T^* of T in exists, is unique and is a bounded (08) linear operator with norm $||T^*|| = ||T||$.

Q.4. B) Answer the following questions (Any two)

(a)Do as directed (Each of 01 marks)

1. The dual space of l^1 is _____

2. "All normed spaces are inner product space." is this statement true?

3. Define Banach space.

(b) Let M be a nonempty subset of a metric space (X, d) and \tilde{M} its closure as defined then (03)

 $x \in \overline{M}$ iff there is a sequence (x_n) in M such that $x_n \to x$.

(c) The product of two bounded self-adjoint linear operators *S* and *T* on a (03)Hilbert space H is self-adjoint if and only if the operators commute, ST = TS.

(03)

(08)