PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc.Winter, 2018-19 Examination

Semeste Subject Subject	er: 2 Code: 11204151 Name: Quantum Mechanics II & Mathematical Physics II	Date: 17/12/2018 Time: 10:30 am to 01:00 j Total Marks: 60	pm
Instruc	tions:		
1. All q	lestions are compulsory.		
2. Figur	es to the right indicate full marks.		
3. Make	suitable assumptions wherever necessary.		
4. Start	new question on new page.		(0.0)
Q.1. A)	Essay type		(08)
	(a) Discuss in detail Spin functions of two electrons.		
	(b) Discuss about Hartree equations.		
Q.1. B)	Answer the following questions (Any two)		
	(a) Short note		(04)
	1. State Pauli's Principle		
	2. Define Indistinguishable particles along with examples.		
	(b) Short note: The Schrodinger Picture and The Heisenberg Picture.		(04)
	(c) Short note: The Central Field Approximation.		(04)
Q.2. A)	Answer the following questions.		
	(a) Short note		(04)
	1.Briefly discuss about quantum electrodynamics.		
	2. Discuss coherent states.		
	(b) Short note: Einstein's Coefficient.		(04)
O.2. B)	Answer the following questions (Any two)		
Q (())	(a) Short note		(03)
	1 Define Electric dipole		(00)
	2 Explain the term momentum transfer		
	3 Define perturbation		
	(b) Short note: Interaction of radiation with matter		(03)
	(a) Short note: Creation and annihilation operators		(03)
0	(c) Short note. Creation and animination operators. Eggsy type/ Drief note $(4x^2)$ (Each of 04 morks)		(03)
Q.3. A)	Essay type/ Brief note $(4x2)$ (Each of 04 marks)	$f(\ell_{-}) = f(\ell_{-})$	(00)
	(a)Prove that if $f(z)$ is analytic on and inside a simple closed curve C, the visit inside C is given by the following contour integral along C:	value of $f(z)$ at point $z=a$	
	$f(a) = \oint \frac{f(z)}{z-a} dz.$		
	(b) Convert the differential equation $y''(x) - 3y'(x) + 2y(x) = 5 \sin x$, $y(0)$ integral equation.	(0) = 1, y'(0) = -2 into an	
Q.3. B)	Answer the following questions (Any two)		
C /	(a) Answer the following		(04)
	1. Is conjugate of z analytic? Give the reason.		
	2. Find the real and imaginary part of $f(z) = z^2 + 5z$		
	(b) Sketch $D = \{z/-1 \le (z) \le 1\}$ is it connected?		(04)
	(c) Determine the poles of the function $(z) = z^2/(z-1)^2(z+2)$ and residue	at each nole. Hence	(01)
	evaluate $\int f(z) dzC$, where <i>C</i> is the circle $ z = 3$	at each pole. Hence	(04)
Q.4. A)	Answer the following questions.		
	(a) Define the following		(04)
	1. Green function.		
	2. Linear harmonic oscillator.		
	(b) Show that the function $u = x^2 - y^2 + x$ is harmonic and find the corre	sponding	(04)
	analytic function.		

Q.4. B) Answer the following questions (Any two)

(a) Answer the following

1. What are conditions for a function to be analytic?

2. State Cauchy's theorem.

_____ expresses the value of a harmonic function within a circle in terms of its 3. _____

value on the boundary.

(b) Enumerate the conditions which Green's function must satisfy. (i.e., Define Green's	(03)
function.)	
c) Define Liouville - Neumann series.	(03)

(c) Define Liouville - Neumann series.

(03)