PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc., Winter 2018-19 Examination

Enrollment No:_____

Semester: 1 Subject Code:11206104 Subject Name: Topology		Date: 07/12/2018 Time: 10:30am to 01:00pm Total Marks: 60	
Instructi 1. All qu 2. Figure 3. Make 4. Start n	ions: estions are compulsory. es to the right indicate full marks. suitable assumptions wherever necessary. new question on new page.		
Q.1. A)	Attempt any one (a) If X and Y be two topological spaces and $f: X \to Y$ is a continuous map, t	(08) then prove the	
	following: (i) For every subset A of X , $f(\overline{A}) \subset f(A)$.	-	
	 (ii) For every x ∈ X and every neighborhood V of f(x) there is a neig such that f(U) ⊂ V. 	hborhood U of x	
Q.1. B)	(b) Prove that the product of finitely many compact topological spaces is con Answer the following questions (Any two)	npact.	
	(a) Do as directed:1. Let X and Y are topological spaces. Describe under which condition a fur said to be continuous?	(04) notion $f: X \to Y$ is	
	 2. State what it means for a subset of a topological space to be path connect (b) Prove that a compact subset of a Hausdroff space is closed. (c) Prove that every metric space is T₂ space. 	ed. (04) (04)	
Q.2. A)	 Answer the following questions. (a) State whether the following statement are true or false with justification All Hausdroff space with countable many points are compact. Finite topological spaces are always connected. 	(04)	
	(b) Prove that continuous image of a connected space is connected.	(04)	
Q.2. B)	Answer the following questions (Any two)		
	(a) Short note/ Multiple choice questions. (Each of 01 marks)	(03)	
	1. A projection map $n_1: A \times I \rightarrow A$ is always		
	(i) Continuous and one-one (ii) Continuous and onto		
	2. Let $Y = [-1, 1] \cup (2,3)$ be a subspace topology of real line with usual to	pology on R . The set	
	[-1.1] in Y is	r - 85	
	(i) open but not closed (ii) closed but not open		
	(iii) neither closed nor open (iv) both open and closed		
	3. If τ_1 and τ_2 are two typologies on non-empty set X, then	s topological space.	
	(i) $\tau_1 \cup \tau_2$ (ii) $\tau_1 \cap \tau_2$ (iii) $\tau_1 \setminus \tau_2$	(iv) $\tau_2 \cup \tau_1$	
	(b) Prove that a closed subset of a compact space is compact.	(03)	
0	(c) Show that every closed subspace A of a normal space X is normal.	(03)	
Q.3. A)	(a)State and Prove Lindelof's Theorem	(08)	
	(b)Prove that separable metric space is second countable.		
Q.3. B)	Answer the following questions (Any two)		
- /	(a) Do as directed:	(04)	
	1. Let $A = \{1, 2, 3, 4, 5\}$ with discrete topology $P(A)$. Is it separable? V	What is the basis for	
	the given topology?		

2. If (X,τ) is a topological space, where $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a, c\}, \{b, d\}\}$, what is the

set of limit points of X? Which points are isolated?

(b) Show that if U is open in X and A is closed in X, then U–A is open in X, and A–U is closed (04) in X.

(c) Let f be a map from topological space X on to a set A. Prove that there exists exactly one (04) topology T on A relatively to which f is a quotient map.

Q.4. A) Answer the following questions.

(a) Do as directed:

- 1. Let(X, T) be a topological space. Let A be a subset of X. Define the closure of A.
- 2. Define when a topological space X is locally compact.

(b) Show that the components of X are connected disjoint subspaces of X such that each non-(04) empty connected subspaces of X intersects only one of them.

Q.4. B) Answer the following questions (Any two)

(a) Prove that a metric space with Bolzano Wierstrass property is a sequentially compact metric (03)space.

- (b) Prove that U is open if and only if U = int(U). (03) (03)
- (c) A topological space X is τ_1 , iff all singletons are closed.

(04)