PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc. (Mathematics) Winter2018-19 Examination

Semester: 1	Date: 05/12/2018
Subject Code: 11206103	Time: 10:30 am to 01:00 pm
Subject Name: Advanced Numerical Analysis	Total Marks: 60

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1. A) Answer the following (Each of 04 marks)

(a) Find a root of the equation $x^3 - 4x - 9 = 0$ using bisection method correct to two decimal places; (04) where root lies between x = 2 and x = 3.

(b) Solve
$$\frac{d^2 y}{dx^2} + 4y = \cos x$$
 with $y(0) = y\left(\frac{\pi}{4}\right) = 0$ and step size $h = \frac{\pi}{20}$ by finite difference (04)

method.

(a)

(c)

2.

2.

Q.1. B) Answer the following questions (Any two)

Using Runge-Kutta method of fourth order, solve
$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$$
 with $y(0) = 1$ at $x = 0.2$ (04)

(b) Prove that the Newton- Raphson method for finding the root of the equation f(x) = 0 has a quadratic convergence. (04)

Using Milne's Predictor-corrector method, Obtain the solution of $\frac{dy}{dx} = x - y^2$ at x = 0.8, given (04)

that
$$y(0) = 0.0000$$
, $y(0.2) = 0.0200$, $y(0.4) = 0.0795$, $y(0.6) = 0.1762$

Q.2. A) Answer the following questions.

- (a) Do as directed: (Each of 02 marks) 1. 1
 - Evaluate $\frac{1}{\sqrt{14}}$ correct to four decimal places by Newton's iteration method.

Find the local minimum of the function $f(x) = x^2 - 4x + y^2 - y - xy$ by using second partial derivative test.

(b) Determine the largest eigen value and corresponding eigen vector by Power method of the matrix (04) $\begin{bmatrix} 2 & -1 & 0 \end{bmatrix}$

$$A = \begin{bmatrix} -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \text{ considering the initial eigen vector as } X_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Q.2. B) Answer the following questions (Any two)

(a) Choose the correct answer for the following multiple choice questions. (Each of 01 marks)

1. If f(x) is continuous on the interval, I = [a,b] and if f'(x) is defined for all $x \in (a,b)$, except possibly at x = p, where $p \in (a,b)$ then,

a. If
$$f'(x) < 0$$
 on (a, p) and $f'(x) > 0$ on (p, b) , then $f(p)$ is a local minimum.

b. If
$$f'(x) > 0$$
 on (a, p) and $f'(x) < 0$ on (p, b) , then $f(p)$ is a local minimum.

c. If f'(x) > 0 on (a, p) and f'(x) > 0 on (p, b), then f(p) is a local minimum.

d. If
$$f'(x) < 0$$
 on (a, p) and $f'(x) < 0$ on (p, b) , then $f(p)$ is a local minimum.

The error in Simpson's $\frac{3^m}{8}$ rule is of order

(04)

(03)

Enrollment No: _____

3. The partial differential equation (PDE) $\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 4 \frac{\partial^2 u}{\partial y^2} - \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0$ is a/an

(b) a. Elliptic PDE b. Hyperbolic PDE c. Parabolic PDE d. Laplace equation
1. Answer the following:

State the iterative formula for finding solution of $\frac{dy}{dx} = f(x, y)$, $y(x_0) = y_0$ by Heun's method.

- 2. If AX = B be the system of linear equations with n number of variables, then state the condition (c) in terms of rank of a matrix A and [A | B], which represents a unique solution.
- Solve the system of non-linear equations by Newton-Raphson method $x^2 + y = 11$, $y^2 + x = 7$ (03) with the initial approximation $x_0 = 3.5$ and $y_0 = -1.8$. Approximate the root for only one iteration.
- **Q.3.** A) Solve the equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square with the sides (08) x = 0, y = 0, x = 3, y = 3 with u = 0 on the boundary and mesh length equals to 1 as shown in below figure by finite difference method.

Q.3. B) Answer the following questions (Any two)

(a) Derive optimum size for central difference formula with O(h) = 4, where h is the step size. (04)

(b) Reduce the matrix
$$\begin{bmatrix} 4 & -1 & -1 & 0 \\ -1 & 4 & 0 & -1 \\ -1 & 0 & 4 & -1 \\ 0 & -1 & -1 & 4 \end{bmatrix}$$
 to the tri-diagonal form, using House-Holder's method. (04)

Using Shooting method, solve the boundary value problem: y''(x) = y(x), y(0) = 0 and (c) y(1) = 1.17.

Q.4. A) Use Nelder-Mead algorithm to find the minimum of $f(x, y) = x^3 + y^3 - 3x - 3y + 5$. Start with (08) three vertices $V_1 = (0,0)$, $V_2 = (1.2,0.0)$, $V_3 = (0.0,0.8)$. Compute four iterations.

Q.4. B) Answer the following questions (Any two)

(a) Find by Taylor's series method, the values of y at x = 0.2 to five decimal places from (03) $\frac{dy}{dx} = x^2 y - 1$, y(0) = 1.

(b) For the given values:

(c)

/	8									(00)	
	x :	1.0	1.1	1.2	1.3	1.4	1.5	1.6			
	y :	7.989	8.403	8.781	9.129	9.451	9.750	10.031			
	Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $x = 1.1$										
)	Evaluate the integral $\int_{0}^{0.6} e^{-x^2} dx$ by taking seven ordinates using Simpson's $\frac{1}{3}^{rd}$ rule.									(03)	

(03)

(04)

(03)