Semester: 1
Subject Code: 11206102
Subject Name: Theory of Ordinary Differential Equation

Date: 03/12/2018
Time: 10:30am to 01:00pm
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q.1. A) For non-homogeneous linear systems $\frac{d \bar{y}}{d x}=\left[\begin{array}{cc}2 & 3 \\ -1 & -2\end{array}\right] \bar{y}+\left[\begin{array}{c}4 e^{3 x} \\ -e^{3 x}\end{array}\right] \quad$ find the fundamental
matrix corresponding to the homogeneous system and also find solution of the given nonhomogeneous system $X_{0}=0$.
Q.1. B) Answer the following questions :(Any two)
(a) Do as directed:
5. Justify the B.V.P $X^{B}+|x|=0 ; 0<t<\pi$ with boundary condition $x(0)=x(\pi)=0$ is not linear.
6. Let $f(x, y)=y^{\frac{2}{3}}$ on $R:|x| \leq 1, y \leq 1$ check whether f satisfies Lipschitz condition on R .
(b) Solve the equation $y^{2} y^{\prime \prime}=y^{\prime}$.
(c) Find a solution $\overrightarrow{\boldsymbol{\phi}}$ of the given system $y_{1}^{\prime}=y_{1} ; y_{2}^{\prime}=y_{1}+y_{2}$ which satisfies

$$
\vec{\phi}(0)=(1,2) .
$$

Q.2. A) Answer the following questions:

(a) State whether the following statement are true or false with justification

1. For $\vec{y}^{y}=\vec{f}(x, \vec{y})$ with $\vec{f}(x, \vec{y})=\left(y_{2},-y_{1}\right)$ and $\vec{y}(0)=(0,1)$, the successive approximation \emptyset_{2} is given by $\emptyset_{2}(x)=\left(x, \frac{1-x^{2}}{2}\right)$.
2. $t=0$ is an ordinary point for the differential equation $t^{2} x^{\prime \prime}+t x+t^{2} x=0$,
(b) Find the indicial polynomials for $t^{2} x^{\prime \prime}+t(3-2 t) x^{\prime}+\left(1-3 t+t^{2}\right)=0$.
Q.2. B) Answer the following questions: (Any two)
(a) If $y_{1}(x)$ and $y_{2}(x)$ are two solutions of the equation $y^{I I}+P(x) y^{I}+Q(x)=0_{\text {on }}$
[a,b] then prove that their Wronskian $W=\left(y_{1}, y_{2}\right)$ is identically equal zero or never zero on [a,b].
(b) Find the basis for the solution of the equation $x^{2} y^{\prime \prime}+x y^{\prime}+y=0 ; x \neq 0$.
(c) Show that $x=\infty$ is a regular singular point of $x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0$.
Q.3. A) Verify that origin is regular singular point and calculate two independent Frobenius Series
solutions for the equation $2 x y^{\prime \prime}+(x+1) y^{\prime}+3 y=0$.
Q.3. B) Answer the following questions (Any one)
3. Consider the IVP $y^{\prime}=3 y+1, y(0)=2$.
a)Show that all successive approximation $\emptyset_{0}, \emptyset_{1}, \emptyset_{2}, \ldots .$. exist for all real x.
b) Compute the first $\emptyset_{0}, \emptyset_{1}, \emptyset_{2}, \emptyset_{3}$ to be the solution.
c) Compute the solution of the IVP
d) Compute the result of (b) and (c)
4. Let f be a continuous real valued function defined on some interval $R:\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right| \leq b,(a, b>0)$ and let $|f(x, y)| \leq M$ in the real XY plane. Further suppose that f satisfies a Lipschitz condition with constant K in R . Then the successive approximation $\phi_{0}=y_{0}, \phi_{k+1}=y_{0}+\int_{x_{0}}^{x} f\left(t, \phi_{k}(t)\right) d t ;(k=0,1,2, \ldots)$ converges on the interval $I:\left|x-x_{0}\right| \leq \alpha=\min \{a, b / M\}$ to a solution ϕ of the initial value problem $\bar{y}^{\prime}=\vec{f}(x, \vec{y})$, $\mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}$.
Q.4. A) Find the Green's function for the following B.V.P $y^{I t}=f(x), y(0)=y(1)=0$.

Hence solve $y^{\prime \prime}(x)=x^{2}$ subject to the same B.C

Q.4. B) Answer the following questions (Any two)

(a) Prove that $\left[x^{P} J_{P}(x)\right]^{\prime}=x^{P} J_{P-1}(x)$
(b) Is the polynomial $r^{2}+2 r+3=0$ stable?
(c) Verify that $y_{1}=x^{2}$ is one solution of $x^{2} y^{I t}+x y^{I}-4 y=0$ then find y_{2} and general solution.

