PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc. Winter 2018-19 Examination

Semester: 1 Subject Code: 11206102 Subject Name: Theory of Ordinary Differential Equation

Date: 03/12/2018 Time: 10:30am to 01:00pm Total Marks: 60

(04)

Enrollment No:

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1. A)

) For non-homogeneous linear systems $\frac{d\overline{y}}{dx}$	=1	$ \begin{array}{c} 3 \\ -2 \end{array} \right] \stackrel{-}{y} + \left[\begin{array}{c} 4e^{3x} \\ -e^{3x} \end{array} \right] $	find the fundamental	(08)
---	----	---	----------------------	------

matrix corresponding to the homogeneous system and also find solution of the given non-homogeneous system $x_0 = 0$.

Q.1. B) Answer the following questions :(Any two) (a) Do as directed:

1. Justify the B.V.P x'' + |x| = 0; $0 < t < \pi$ with boundary condition

$$x(0) = x(\pi) = 0$$
 is not linear.

2. Let $f(x, y) = y^{\frac{2}{3}}$ on $R : |x| \le 1, y \le 1$ check whether f satisfies Lipschitz condition on R.

(b) Solve the equation
$$y^2 y'' = y'$$
.
(04)

(c) Find a solution $\vec{\phi}$ of the given system $y_1 = y_1$; $y_2 = y_1 + y_2$ which satisfies

$$\vec{\phi}(0) = (1,2).$$

Q.2. A) Answer the following questions:

- (a) State whether the following statement are true or false with justification (04)
 - 1. For $\overline{y}' = \overline{f}(x, \overline{y})$ with $\overline{f}(x, \overline{y}) = (y_2, -y_1)$ and $\overline{y}(0) = (0, 1)$, the successive approximation \emptyset_2 is given by $\emptyset_2(x) = \left(x, \frac{1-x^2}{2}\right)$.

2.
$$t = 0$$
 is an ordinary point for the differential equation $t^2 x^{"} + tx + t^2 x = 0$,
(b) Find the indicial polynomials for $t^2 x^{"} + t(3-2t)x^{'} + (1-3t+t^2) = 0$.
(04)

Q.2. B) Answer the following questions: (Any two)

(a) If $y_1(x)$ and $y_2(x)$ are two solutions of the equation $y'' + P(x)y' + Q(x) = 0_{\text{on}}$ (03) [a,b] then prove that their Wronskian $W = (y_1, y_2)$ is identically equal zero or never zero on [a,b].

(b) Find the basis for the solution of the equation $x^2y'' + xy' + y = 0; x \neq 0.$ (03) $x^2y'' + 4xy' + 2xy = 0$ (03)

(c) Show that
$$x = \infty$$
 is a regular singular point of $x^2 y'' + 4xy' + 2y = 0$.

Q.3. A) Verify that origin is regular singular point and calculate two independent Frobenius Series (08) solutions for the equation 2xy'' + (x + 1)y' + 3y = 0.

Q.3. B) Answer the following questions (Any one)

1. Consider the IVP y' = 3y + 1, y(0) = 2.

a)Show that all successive approximation $\emptyset_0, \emptyset_1, \emptyset_2, \dots$ exist for all real x.

- b) Compute the first $\emptyset_0, \emptyset_1, \emptyset_2, \emptyset_3$ to be the solution.
- c) Compute the solution of the IVP
- d) Compute the result of (b) and (c)

2. Let f be a continuous real valued function defined on some interval

 $R: |x-x_0| \le a, |y-y_0| \le b, (a, b > 0)$ and let $|f(x, y)| \le M$ in the real XY plane. Further

suppose that f satisfies a Lipschitz condition with constant K in R. Then the successive

approximation $\phi_0 = y_0$, $\phi_{k+1} = y_0 + \int_{x_0}^x f(t, \phi_k(t)) dt$; (k = 0, 1, 2, ...) converges on the interval

 $I:|x-x_0| \le \alpha = \min\{a, b/M\} \text{ to a solution } \phi \text{ of the initial value problem } \vec{y}^* = \vec{f}(x, \vec{y}),$ $y(x_{0)} = y_0.$

Q.4. A) Find the Green's function for the following B.V.P y'' = f(x), y(0) = y(1) = 0. (08) Hence solve $y''(x) = x^2$ subject to the same B.C

Q.4. B) Answer the following questions (Any two)

(a) Prove that
$$[x^{P}J_{P}(x)] = x^{P}J_{P-1}(x)$$
 (03)

(b) Is the polynomial $r^2 + 2r + 3 = 0$ stable? (03)

(c) Verify that $y_1 = x^2$ is one solution of $x^2y'' + xy' - 4y = 0$ then find y_2 and (03) general solution.

(08)