Enrollment No:____

PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc. Winter 2019-20 Examination

Semester: 3 Subject Code: 11206201 Subject Name: Functional Analysis	Date: 26/11/2019 Time: 2:00pm to 4:30pm Total Marks: 60
 Instructions: 1. All questions are compulsory. 2. Figures to the right indicate full marks. 3. Make suitable assumptions wherever necessary. 4. Start new question on new page. 	
Q.1. A) If Y is Banach space, then $B(X, Y)$ is Banach space.	(08)
Q.1. B) Answer the following questions (Any two) (a) Let $X = (X, d)$ be a metric space then a. A convergent sequence in X is bounded & b. If $x_n \to x$ and $y_n \to y$ in X then $d(x_n, y_n) \to$	(04) ts limit is unique. d(x,y).
(b) Every finite dimensional subspace Y of a normed sp In particular, every finite dimensional normed space (c) If a normed space X has the property that the closed $M = \{x/ x \le 1\}$ is compact ,then X is finite dimensional	ice X is complete.(04)e is complete.unit ballunit ball(04)onal.
 Q.2. A) Answer the following questions. (a) A subspace <i>M</i> of a complete metric space <i>X</i> is itself of if the set <i>M</i> is closed in <i>X</i>. (b) Let <i>Y</i> be any closed subspace of a Hilbert space <i>H</i>. t <i>Y</i>[⊥]. 	Somplete if and only (04) en $H = Y \oplus Z; Z =$ (04)
Q.2. B) Answer the following questions (Any two) (a) The product of two bounded self-adjoint linear operations Hilbert space <i>H</i> is self-adjoint if and only if the operator (b) Let <i>X</i> be an n – dimensional vector space. Then any of <i>X</i> has dimensional less than n . (c) Let <i>X</i> be a normed space and let $x_0 \neq 0$ be an element exists a bounded linear functional \overline{f} on <i>X</i> such that $ \overline{f} $	tors S and T on a (03) s commute, $ST = TS$. proper subspace Y (03) at of X. Then there (03) $= 1, \bar{f}(x_0) = x_0 .$
 Q.3. A) An inner product and the corresponding norm satisfy the inequality and the triangle inequality as follows. a. We have ⟨x, y⟩ ≤ x y where the equality sign {x, y} is a linearly dependent set. b. That norm also satisfies x + y ≤ x + y where holds if and only if y = 0 or x = cy (c real and ≥ 	ne Schwarz (08) holds if and only if re the equality sign).
Q.3. B) Answer the following questions (Any two) (a) A mapping $T: X \to Y$ of a metric space (X, d) into a metric space (X, d) is closed and Y is complete, into (X, d) into a metric space (X, d) is closed and Y is complete, then $\mathcal{D}(T)$ is closed space (X, d) is closed space (X, d) into a metric space (X, d) is closed and Y is complete, then $\mathcal{D}(T)$ is closed space (X, d) into a metric space (X, d) is closed and (X, d) into a metric space $(X,$	etric space (Y, \overline{d}) is (04) $a \to Tx_0$. $M \subset X$ is compact if (04) omain $\mathcal{D}(T) \subset X$, (04) ed subset of X.

Q.4. A) Consider a metric space X = (X, d), where $X \neq \phi$. Suppose that X is complete and let $T: X \rightarrow X$ be a contraction on X. Then T has precisely one fixed point.

Q.4. B) Answer the following questions (Any two)

(a) Every convergent sequence in a metric space is a Cauchy sequence. (03) (b) If $\langle v_1, w \rangle = \langle v_2, w \rangle$ for all w in an inner product space X, then $v_1 = v_2$. In (03) particular, $\langle v_1, w \rangle = 0$ for all $w \in W$ implies $v_1 = 0$. (c) Let X & Y be metric spaces and $T : X \to Y$ a continuous mapping . Then (03) the image of a compact subset M of X under T is compact.

(08)